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Chapter 4

CALCULATION OF PERTURBATION

By

E° Fues, Stuttgart

with 4 Figures

I. INTRODUCTI ON

I. The significance of the theory of perturbation for

physics. Strictly speaking, the methods of analytic mechanics

are only adequate to overcome the most simple motion problems of

point systems. It is, in fact, possible to prove the famous

Keplerian Laws for the two-body problem with relatively simple

I
means, but the three-body problem already escapes exact mathe-

2
matieal integration. For a long time astronomers have tried to

tear down these apparently insurmountable limits of our analysis;

however, it has been shown that the difficulty does not lie in

the imperfection of mathematical methods but in the mechanism of

the motion itself. Poincar_ has proven that the three-body problem

does not admit a large enough number of significant, integrals,

which are necessary to represent for any given time the coordi-

nates as multiple periodic functions of time. Thus, it is no

I) Cf. Ch. 7, Fig. 25 of this Handbook Vol_ne.

2) Cf. Ch. 7, Fig. 26 of this Volume.
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wonder that the over a century old experiments in this direction

were futile.

Under the stress of this impossibility approximation methods

were sought at an early stage. The minuteness of the forces

acting on a planet from its neighbor planets with respect to the

sun's force of attraction permits one to expand the motion equa-

tions in power series according to the small relationship of the

masses, and from this a similar expansion of the integrals can

be derived. Moreover, it has been shown that this approach is

not limited to the case in which the nature of the problem

permits strictly unambiguous integrals, but that it also con-

tinues to exist formally when the system observed is of such

a kind as say, the three-body problem. In any event, these

formal solutions possess no absolute convergence--hence the

impossibility of exact integration--but they are of the

greatest significance in practical celestial mechanics because

of their semi-convergence. The branch of mechanics included
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i
under the name of perturbation theory is concerned with nothing

more than erecting a formal integration process for given mechan-

ical problems which can be viewed as "perturbations" of a known

fntegrable mechanism. The development of this method is par-

ticularly associated with the names Lagrange and Delaunay in an

earlier period and in much greater completeness in later times

with the astronomers Gylden, Lindstedt and Bohlin as well as

0

the mathematician Poincare.

Earlier physics had no cause to be interested in these

methods of calculation until the construction of the Bohr model

of the atom suddenly established a close relationship between

2

atomic theory and cosmic astronomy. Bohr himself was the first

J

I) Some of the detailed texts on the subject are: H. Poincare,
• . S

celeste Vol. Gauthier Villars 1905;Lecons de mecanlque . 3. Paris: S

H. Polncare, Les methodes nouvelles de la mecanique celeste. Vol 3.

Paris: Gauthier Villars 1892; C. L. Charlier, Die Mechanik des

himmels, Vol. 2. Leipzig: Veit & Co. 1907; E. T. Whittaker,

Analytische Dynamik der Punkte und starren K_rper. German by

Mittelsten Scheid. Berlin: Julius Springer 1924. The following

texts and theses already discuss the subject in view of the appli-

cation to the (Bohr) atomic theory: J. M. Burgers, Het Atoommodel

van Rutherford-Bohr. Dissert. Leiden. Haarlen: Erven Loosjes 1918;

A. Sommerfield, Atombau und Spektrallinien, fourth edition,

Braunschweig: Vieweg 1923; the most detailed: M. Born, Vorlesungen

_ber Atomdynamik, Sammlung Struktur der Materie. Berlin: Julius-

Springer 1925. The author is obligated to countless stimulating

ideas and insightful suggestions from an unpublished article by

W. Pauli, Jr., which was originally thought of as an introduction

to the article on quantum theory in this Handbook, Vo. XXIII.

2) Cf. the article on quantum theory by W. Pauli, Jr., in this

Handbook, Vol. XXIII.
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to point out the resources completed by the astronomers which

were available for the purposes of atomic research. The in-

fluence of an external electric field and that of the relativis-

tic forces of gravity on the Kepler paths in the hydrogen atom

can be calculated with the method of the secular perturbations.

However, with the many-body problem of the Bohr atoms and mole-

cules the situation is much less favorable than in celestial

mechanics. The expansion parameter, the relationship of the

electron charge to the nucleus charge, is by far not as small

as in celestial mechanics, which influences the convergence of

the series unfavorably. Secondly, the time periods one is inter-

ested in--measured on the characteristic periods of the system--

are enormously larger than in astronomy. In spite of this, a

series of atom problems are dealt with according to perturbation

theory. On one hand Epstein and on the other Born and his

colleagues (Brody, Pauli, Heisenberg, Nordheim) have worked on

the transposition of astronomical methods to atomic physics.

The direct yields were, first of all, not as large as one might

have hoped for--or, moreover, they lay in another direction.

Aside from general information on decay and development of motion,

on the "effects" in the spectra, on the phase relationships and

the general character of motion in the molecular bond, one gained

no understanding of the helium spectrum or the hydrogen molecule

ion. One did, however, come to the always certain conclusion that
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classical mechanics, even in connection with "quantum conditions,"

is not capable of leading to a precise understanding of compli-

cated atoms. Even if there was no success in the main concern, a

mathematical resource was created, which can be applied to growing

circle of tasks and which certainly will some day prove out in

regions of physics which are still a long way away.

Meanwhile, atomic physics has acquired a new formulation.

According to Heisenberg's process, Born, Jordan, Dirac and c_ers

have developed a theory of spectral frequencies and intensities,

which is indeed very similar externally to earlier mechanics, but

which follows such unusual rules of calculation that it can only

be understood with the help of altered basic definitions.

Schrodinger could later prove that this formalism is associated

with the problem of the natural oscillation frequency of a con-

tinuum, ahus, something quite different than could be suspected

2
from the initial equations. However, there is an inner connec-

tion between the "wave mechanics" of the atomic world and its

macroscopic law of limits, point mechanics, which allows the

understanding of the close formal relationship of both. Wave

mechanics also has its theory of perturbation, but cannot be

discussed in the present chapter.

I) Cf. M. Born, Probleme der Atomdynamik. Berlin: Julius
Springer 1926.

" " Abhandlungen zur Wellenmechanik J.A.2) Cf. E. Schrodlnger,
Barth. Leipzig 1927. Cf. the article "Optik und Mecnanik"
by A. Lande in this Handbook, Vol. XX.
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The observations in this chapter make extensive use of the

treatment of mechanical questions presented in Chapter 3 by

Hamilton and Jacobi. They therefore are linked to the canoni-

cal form of the motion laws of a mechanical system of _ degrees

of freedom (cf. Ch. 3, No. 12).

The integration process always consists of an integration of the

Hamilton partial differential equation (cf. Ch. 3, No. 12), and

the theory of the canonical transformation of a problem will be

used.

Before one can go into the actual subject of this chapter,

perturbation calculation, it is necessary to present in advance

several comments on the forms of motion and on the distinct role

which the periodic and limited periodic movements play in higher

mechanic s.

II. MULTIPLE PERIODIC MOVEMENTS

2. The significance of unique integrals. Consider the

condition of the mechanical system at a given starting time _o"

characterized by the position of an image point in the 2

dimensional phase volume of Pk , qk, the following system

transformation by the migration of an image point on the phase

orbit calculated from the equations (i), No. I. In addition,
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for present purposes several simplifying presuppositions will be

made. Let this be a closed system for which the Hamilton function

H is independent of time, thus

•H(p, = w (1)

is an integral, namely the integral integral in general. The

phase orbit then runs on the (2 f-i) dimensional hypersurface

given by Equation (i), which we will shortly like to call the

energy surface, not bothered by the fact that W does not sig,,ify

the system energy in every case. Moreover, we will suppose that

he energy surface, and with it the phase path run completely

in the finite. This excludes, on the one hand, all of the

movements which run to the infinite region of the illustrative

volume (e.g., the hyperbolic movements of the planets) and, on

the other hand, also includes an assumption on the selection of

coordinates: All angle--like coordinates which can grow in an

unlimited fashion in spite of the limited position of the system

are not to be applied for the moment, but only those which are

uniquely related to the position of the system.

If one constructs the phase paths at all the possible initial

conditions of the system, they fill the phase volume closely in

such a way that, excepting certain singular points, only one

phase path goes through each phase point. In its further pro-

gress each phase path remains constantly in the energy surface
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belonging to it; it shares this fate with all phase paths which

one can project through initial points with the same system

energy. For example, beginning with the initial point first

selected one can still continue in (2f -2) dimensions to the

neighboring points transversally to the phase path without leav-

ing the integral surface H = W. Moreover, its surface element

is directly fulfilled by the selected number of points and by

the path elements passing through it. Using the dimension

perpendicular to the energy surface one can combine another

(2f -2)-fold number of points and their path elements into the

element of a hypersurface equally well, though. If one always

continues this in such a way that it always follows the phase

paths lying in it, this construction is derived from the new

integral surface.
F(p, q) = _

One can easily imagine that all together there exist (2f -I)

independent families of such integral surfaces. The phase paths

are the family of their intersections. The equations of the inte-

gral surfaces together with an equation for the chronological

course of the motion are the 2f possible integrals of the mechan-

ical problem.

Let us select one of the energy surfaces and follow a phase



-9-

i
path on it further and further. One can expect that, in general,

that it fills the entire energy surface by lining up more and more

orbital loops. (The expression "surface" destroys one's ability

to visualize this to a great degree here. With two degrees of

freedom one is already dealing with a three-dimensional energy

volume.) It then proceeds quasi-ergodically, to use a term from

statistical mechanics, that is, in the course of time it approaches
2

every point on the energy surface or on a related surface of it.

Every integral surface Fk = _k' itself constantly overlapping

intersected by H = W must finally fill a 2f -dimensional region

densely since it follows the phase paths. Thus, the various

surfaces of a family penetrate each other; the value of _k

in a definite phase path element becomes infinitely ambiguous.

Aside from H = W there are no unique integrals.

This possiblility is opposed to the other case. If a phase

path does not densly fill its energy surface or a (2f - I) dimen-

sional region in it, but only a (2f - n) dimensional section of it,

it can therefore be thought of as arising from an intersection of

n, integral surfaces FI to Fn not overlapping infinitely many times

I) This is mainly based on observations of statistical mechanics,
especially on the Liouvillean Theorem proven in Ch.3, No. 5. E.
Fermi has attempted a proof, Phys. 25, Vol. 24, p. 261, 1923.

2) E. Artin gives an example of a quasi-ergodic system, Abhandl.
a.d. math. Sem. d. Hamburger Univ. (Dissertation at the mathematical
seminar of the Univ. of Hamburg) Vol. 3, p. 170, 1924.
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with the energy surface. Neighboring surfaces to such families

do not intersect each other unless at certain singular positions;

each path element has only one par_-eter value _k" _nere are n

other unique integrals independent of H = W, not explicitly contain-

ing time.

The significance of infinitely ambiguous integrals is much

different than that of the unique integrals. These latter limit

movement to a much greater degree than the former. The existence of

the former (there are always 2f intSgrals of motion, irregardless

of how the system was created) actually says nothing more than that

the motion is uniquely determined. The latter only exist in partic-

ularly simple mechanical systems or for special cases of more general

motions. How many unique integrals are possible is, thus a question

of the greatest importance in the investigation of a mechanical

system. In certain cases the non-existence of unique integrals

can be proven (cf. No. 16).

3. The special position of the multiple periodic movements.

The motion is especially simple when at least f unique integrals

exist. No matter how one makes a derivation from the image of

their integral surfaces in the pq volume, in this case only one

or a finite number of values of the impulse vector can belong to

a point in the q volume during the same system motion, just as,

when a pendulum oscillates undisturbed, at every point of its

stroke only two speeds are possible. Further simplifications
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of the motion seem to be necessarily bound as a function of the

position to this finite, ambiguous definiteness of the impulse

vector. Mechanical systems of this kind always are multiple periodic

if one ignores special cases and all motions proceeding infinitely.

The recently abandoned atomic mechanics and astronomy deal almost

exclusively with them, and their mathematical accessibility is so

much greater than that of the complicated types of motion that the

attempt to master them also with "perturbation calculation" always

te.--_-ir_ates in a_ ap_ro:¢i_r_atlcn hi_ -__!t_!e _ericdic _ve__er_ts.

Therefore, they alone will be discussed in the following.

The theorem that f unique integrals produce multiple periodic

motion has been strictly proven for two degrees of freedom by Kneser. 1

His arguments make it probable, however, for additional degrees of

freedom. The following sections will show that the existence of

further unique integrals only reduce the degree of periodicity.

Nevertheless, in a closed system with fewer than f unique integrals

no multiple periodic motion seems to be possible, not even with

more than f periods, and, moreover, the reversal of the above

theorem seems to hold: Multiple periodic motion is bound to the

existence of at least f unique integrals. Compare Ehrenfest's 2

and Wataghin's3notes, which don't give any proof for this. (The

i) H. Kneser, Math. Ann. Vol. 84, p. 277, 1921.

2) P. Ehrenfest, ZS f. Phys. Vol. 19, p. 242, 1923.

3) G. Wataghin, Ann. d. Phys. Vol. 76, p. 41, 1925.
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theorem does not hold for non-closed systems. There a more than

f-fold periodic motion is possible, as the example of the constrained

vibrations of an oscillator already shows.)

4. Variable of angle and effect. In Section 3 it was stated

that celestial mechanics attempts to describe the motions of its

systems (with certain exceptions) as multiple periodic, be it

rigorously or by approximation. The basis for this description of

a certain type of motion was recognized in its special mathematical

position which permits an especially complete integration. When

one reads over the texts on celestial mechanics, one discovers a

tiresome abundance of transformations which seek to adapt as exactly

as possible to the selection of variables for each special problem.

The physicists who transfered these methods to atomic physics

immediately completed a certain sorting operation in the interests

of the quantum theory and selected the most important transformations.

This led to a very coherent form of calculation, which is possible

for every multiple periodic system: calculation in angle and effect

variables. With the help of this calculation the calculation of

perturbations in particular acquired a highly comprehendable

construction. The definition and introductions to this standardizing

variable, as one says, will be described step by step in the follow-

ing sections.
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5. Periodic _notion with one degree of freedom. In systems

with one degree of feedom the equation H(p,q) = W is also the

equation for the phase path in the pq phase plain. A family of

curves corresponds to various values of W; their individual curves

do not intersect each other on account of the uniqueness of W. We

then assume that q is a coordinate which is dependent on the system

in ,_ unique manner, i.e., the cartesian coordinate of a mass point

or the position on a non-closed curve etc., but is not the angle

of rotation which can assume various values for the same position of

the system. If we limit consideration to motions which completely

proceed into the finite region and are uniform in the physical sense,

the curves H = W are necessarily closed within themselves (cf. Fig. i)
q

Fig. I Phase paths of a periodic motion with libration.

The motion proceeds between fixed limits (ql q2 q3 q4 ql ); one

calls this libration. With the variable W the phase path on a'small

curve contracts around a fixed point qo' the center of libration.

The motion itself degenerates to small oscillations around a stable

position of equilibrium in qo" The limits of libration are given
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by q = _H/_p = 0, they always occur as couples when W changes

(e.q., q3' q4 ) and contract at the instant of their creation.

The point where they contract corresponds to a labile position

of equilibrium (q*).

However, if the degree of freedom q is angular, so that

q + x actually describes the same system position as the value

q, the unique definiteness of the integral value W resulting

from the state of motion requires either that the curve is again

closed or that p is represented with the period x as the periodic

function of q (cf. Fig. 2). In the second case the angular

coordinate q increases in an unlimited fashion; however, the

position of the system is repeated during this case from time

to time. The motion type is that of rotation. Also, libration

i_._ _ /

Fig. 2 Phase path of a periodic motion with rotation.

motions with W varied often are transformed into rotation motions

(cf. the following example). As borderline case between both

limitation can appear, i.e., a motion which only approaches a

point of inflection still present in an infinitely long time.

The most well known example for the three types of
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I
motion is the pendulum motion with the energy equation.

H --_-_p$ --I)cos_ = W

(A is the moment of inertia, D the product of pendulum weight

and distance between fulcrum and center of gravity, _ the swing).

From it can be calculated

,p_ = l/2A _lIV + Dcosq_,

represented in Fig. 3. When W = D there is inertia in the libra-

tion center, for - D_W_+ D various extended librations arise.

W = D corresponds to the known infinitely slow approach of the

pendulum to the uppermost point, i.e., the limitation, and W_D

corresponds to the rotary motion of the pendulum, the rotation.

Fig. 3 Phase paths of the pendulum motion.

So much on the spatial character of the motion_ The periodic

phase path returning back on itself or q allows one to expect a

path periodic in time without calculation; and calculation confirms

I) See Ch. 7, No. 12 in this Volume of the Handbook.
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this. The case of one degree of freedom is, thus, a revealing

example for the general theorem suspected in No. 3 that _ unique

integrals of the motion result in the chronologically periodical

or multiple periodical course of this phase path.

We will now turn to the integration of the motion and

follow the path suggested in Ch. 3, Sect. 12; it easily leads

to the form of calculation discussed in Section 4. We will

thus look for the integral S (q,'_) of the Hamiltonian differ-

ential equation. 4

_q ,q = W

and use the transformation equations as the generatrices [cf. Ch. 3,

Sect. 3 (6)].
8S 8S

P -- Oq '. Q = 6--_"

The operation nearest at hand would be to use the quantity W as

the chronologically constant, new impulse o_ , but another choice

is better for reasons which will be clear later, namely that of

the integral

] = _pdq. (1)

The symbol _means that an integration is to be made along the entire

phase path until the return of the system to its initial slate; "

thus with the libration motion once over the closed phase path,

with rotation over a period of the coordinate q.

The newly selected impulse J is called the variable of effect
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because it indicates the increase in the characteristic function

(more generaly the function S) during a complete system cycle.

It is _ _s ,
f -q=7.

Its chronologically invariable value is equal to the content of

the surface elements shaded in Figs. I and 2, naturally independent

of W, so that conversely W = W(J).

The canonically conjugated coordinate of position.

I

w = _s(q, j)
r_J _ "' (2)

is called the angle variable. It has the following characteristics:

on one hand it increases linearly with time since the transformed

Hamiltonian function is

so that the "average motion" of W, namely w I_W/_J -- Y is a

constant and thus

w=_t+6 (3)

While the increase of W amount to v --_W/O J per unit of time,

it amounts to

y aq= 7 aq=

during a complete system rotation.

In other words: Each time that the system has completed a complete

motion and returned to the initial state, w increases by the same

amount of one. From this, it follows that the state of the system
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is periodic in w with period i, so that one can write I

a) in the case of libration;

b) for a rotating q:

+_

q =_ + (f_) = xw +._a,e 2''_''_.
- 0o

4)

Tho ,efficients of the Fourier series are dependent on J and are

defined in a familiar fashion as

w*l

a) a,.=Jq(_)e--2.-,.,_dw,

w+l

b) a, =f(q -- gw)e-2""wdw.
W

One can easily imagine that S can be represented in form

s = Jw + (_). (5)

Finally, the chronological periodicity of the motion can be read

from (3) and (4); it is

a) in the case of libration:

b) in the case of rotation:

+oo
(6)

whereby v = _W/_J signifies the frequency of the motion.

For two motions of the system which are described by various,

but neighboring values J, J +AJ the here self-evident theorem

__ = _: (7)

holds true. In quantum theory it is the point where Bohr's prin-

2
ciple of correspondence is tied in.

i) In the following the abbreviation f _) always means: periodic

function of w. If it says nothing else, this does presuppose that

the period is equal to one.

2) Cf. the article "Quantentheorie" by W. Pauli, Jr. already men-

tioned at the beginning. This Handbook, Vol. XXIII.
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An example will bring out the significance of the new va, ia-

bles: The equation of energy of the linear harmonic oscillator is

H -- 27:_+ 2z:v_mql = W

(m the mass, v the frequency, q the swing).

One obtains
.. . • .

J = :pdq = W und S /r.]" 2n'#,nq'dqV

From this follows

and

0S 2_ arc sin l/_-__ q = vt + 6

• /" [ •
)

# = ]127mj / cos 2_rw. // (8)

The introduction of w, thus, corresponds to the known geometric

construction of the sine oscillation as a projection of a uniform

circular cycle, i.e. a rotation. The unit of the angle of rotation

is selected so that the period in it equals one.

i
6. Separable mu_iple periodic systems. If equation for

the constancy of the Hamiltonian function

II(p,....P/,qx....q/)= "W

breaks down into_unique first integrals

Hi@j, _) = Aj ; (i = 1, 2 .... /)

as assumed in Ch. 3, Sect. 13, the phase path of the system can

I) Cf. the first investigations of same by P. St_ckel, Dissertation

to gain university lecturer status, Halle 1891; also C. L. Charlier,

Die Mechanik des Himmels, Vol. I, Sect. 2; K. Schwarzschild, Berl.

Ber. 1916, p. 548; P. S. Epstein, Ann d. Phys. Vol. 51, p. 168. 1916.
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Hamiltonian function

from which,

and

a'gain fo] low.

. ...)=)v(/,.... h),

w_ = v,.t + 6_

In comparisons, the growth of W k is

(3)

(4)

during a complete cycle of qj under a forced arresting of all other

q. The image of a q volume on the w volume presented by (2) has

the following characteristics therefore: If one begins with a

definite configuration of the system and allows an individual

coordinate to follow its possible course to a complete return,

only the respective w increases by a unit, while all other w return

to their initial value. Thus, all points of a regular lattice in

the w volume with the lattice constant i signify the same configura-

tion and, because of the phase path characteristic mentioned ini-

tially, to return to the same value of Pk after every cycle of qk'

also the same impulses. Since the inverse functions of (2) prove

_o be _i_e, :- follows from the inversion of this relationship

that qj and pj are periodic functions of Wk, each with periods of I.

This holds true not only for the separation coordinates used up to

now, but also for all coordinates uniquely related to them. In
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such cases it is, thus, possible to represent the qj, pj as repeated

Fourier series of Wk:

L = t_'_.... "_) = _"... \'a _ e=-",',_ ....... ,"_ !

or shortened -'_ (5)

The coefficients of the series are determined (dependent on the Jk )

to be _,.1 _r*l

<.... .....
tC 1 Wf

When qk itself is '"angular" and rot_tes (qk- Xk Wk) always takes

the place of qk in these formulas.

s =_Aw_ + (_, .... "_/).
v

Similar to Sect. 5

(6)

Because of the linear increase of W k according to Equation (3)

the repeated chronological periodicity of the motion

or _--_(b_+_) -= -=_-".....'" ""

follows from (5).

quantities

(7)

The motion frequencies are given by the

= ; (8)

they are characterized as average motions of the coordinates W..
]

, 7. Deca Z of the motion. It will be purposeful for what comes

later to observe more closely the image of the q volume on the

W volume which is expressed by Sect. 6, Eq. (2). Since the con-

dition of the system is periodic in the Wk with a period of l, the

unit cube of the W volume exhausts all the possibilities of the

positions q. The entire path region is reproduced in it, even in
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a part of it, since when the W k assumes all positions on the unit

cube, the image point in the q volume travels through the path

region repeatedly on account of the librations.

• It is especially easy and clear to follow the motion in the

W volume. Because of the chronologically linear growth of W k

according to Sect. 6, Eq. (3), the image in the W volume moves

uniformly on a straight line whose slopes with respect to the

axes are given by

dw 1 : .,. : dw! = _,_: ... : _'I._'

___a._z_h_ line _oMe_unwhile, it is superfluous to follow the =_ _- _ its

full extension. Since every newly entered unit cube only repre-

sents the old state of motion again, it is sufficient to cut

the path in pieces by the side surfaces of the W cubes and to

shift each section back into the initial cube by integral displace-

ment parallel to the axes. Thus an image of the path is created

which consists solely of straight, parallel portions.

One notes (the proof, for example, is found in the appendix

to Born's book, quote in Sect. I, footnote) that with time the

path segments fill the unit cube with uniform density when no

linear, integral relationship
°_-

(_)') = "q ;'l + "'" + lrs"s"= 0

e_:i-_= "_e_-_en vk = _W/_J k. This means that the Fourier series

Sect. 6 (7) are actually _- fold periodic since _ independent motion

frequencies exist. One can infer the motion itself from the W volume;
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The integral

the path curve densely fills the _ dimensional path region in time.

At some time it approaches each point of the same. (Thus also,

after a quasi-period an arbitrarily selected initial point on the

p_th ) In this sense _ne mot on is _ally evolved. C_,e notices

that, if in Sect. 6 the coordinates gj signify actual positions

in the geometric sense (and are not defined by a tangential trans-

formation), the path region is enclosed by the limit surfaces of

libration qj -- constant, and that one can say in this case that

the separation coordinates are uniquely defined by the surfaces

of the motion itself (cf. Ch. 3, Sect. 13).

The uniformly dense filling of the unit cube in the W volume

by the path curve, together with the uniform motion in it, permits

a very simple calculation of mean values of time over the motion.

_/I(... P,., _..
2'

is all the more exactly equal to the mean value of volume of

take over the unit value in the W volume the larger T becomes.

On the other hand, when s linear integral relationships between

the frequencies v. exist:
3

(1) -
z_l_-l-...+T_/yf=O. (0=1,2 .... s)

Then the unit cube of the W volume will not be densely filled, but

only a (f - s) dimensional region of the same. For this reason

the path curve is limited to a (f - s) dimensional region in the
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position volume; the motion has decayed s-fold, as is said. The

Fourier expansion Sect. 6 (7) actually does not represent any _-

fo1:_ periodic function of time since s frequencies of motion can

be rationally expressed by the others. The state of the system

is only an (f - s)-fold periodic function of time. Each purely.

periodic motion of a system with more than one degree of freedom

belongs to this. On account of the characteristic of multiple

periodic systems to assume purely periodic motions for certain

frequency-response-ratios, Staude has'defined them as being limited

periodic.

In the case of decay one can perform and often used extraction

o
of the angle variables. If one substitutes s of the variables w

introduced in the first instance, say W° f- s+l

following new

=,= _,w°+ .-.+ r_lW°,,(.o= l- s+ _,...l)

o by the
to Wf

(2)

a transformation which with the help of the generatrices

/-s !

2- ..0 is= 1._ + _-7 1_(_._,_+ --. ,_._:) _ (3)
m:$ U =,f- a", $

can also be expanded canonically to the action variables, it

follows that

thu s

_o.= _,_, + ... -__lV_= o,

w:,= constant
(4)

They are thus called the uncharacteristic angle variables. Their con-

stancy is only another expression for the reduction of the number of

iF,dependent frequencies of motion. One notes that f - s characteristic
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angle variables are sufficient _o describe the motion. In the lat-

ter sections we will follow the custom of many authors and describe

uncharacteristic, as opposed to characteristic, angle variables by

the index e ( if necessary #,

will be indexed with e_, _,

7...); the characteristic variables

_...

Purely periodic motions only possess one independent frequency

of motion, accordingly only one characteristic angle variable. The

canonically action variable ccordinate is, as one can see from

SecT. 6 or, even "-----_=_=r,Sect. i0. _

i (5)

8. Characteristic, random or limit decomposition. There are

three typical cases of decomposition:

If one introduces the new action variables by means of the

transfomation Sect. 7, Eq. (3), then W becomes a function of the

same: W (Jl,...Jf)" However, it can be derived from Sect. 7,

Eq. (4) and We = _W/ @Je that for all uncharacteristic angle variables

 -27= 0. ( 1 )

There can be three reasons for this:

Either (i) holds true for all values .of jo. Then, every

possible motion of the system has decayed; a f-fold periodic motion

i

i= .... a_ all capable of this. The division given between charac-

teristic and uncharacteristic angle variables can always be per-

formed in the same way. In this case the equations (i) mean that W

is not at all dependent on Je. This case is described as character-

istic decay.
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Or, secondly, there are rational frequency-response-ratios

o
between the v values for certain vahes of jo. Then, only these

special motions of the system are decayed, and the equations (I)

signify no functional independency of quantity W from J , bute

rather an evanescence of the derivates for certain J values. One
e

then speaks of random decay. If one considers whethcr this case

o
can occur frequently, then it turns out that the v values, for

which some commensurability as in Sect. 7 Eq. (i) exists, even lie

densely; the same holds true, thus for the jo values functionally

connected with them. On the other hand, there are only a few

individual systems jo for which a definitely selected variable W

decays at random.

A third type of decay can also occur; it is actually the nearest

at hand. When a coordinate qj stabilizes at its center of libration

instead of oscillating around it, the motion decays. The decay

in the q v_lu__e need nat be n_ticeab!e in the _ w_!-_u_e. T_ is _

a frequency that vanishes, but rather, the amplitudes in the

Fourier expansion of qj as a result of special values of Je" Note,

for example, equation (8) of the example in Sect. 5. For J = O,

q = 0 since its amplitude is proportional to_. But W is not
4

a constant since the constantly fixed frequency V of the oscillator

does not evanesce with J. Moreover, W - vt + d remains a quantity

which increases linearly with time. This expresses a fundamental

difference in the angle variables of each librating coordinate.
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With the help of angle variables the motion is described as a

"uniform rotation;" however, for the rotation there is no trans-

ition to the rest state, even-_-ith v_ishin_ free-_ency, in the

case of decay on account of vanishing amplitude, which one

characterizes as limit decay, the difference causes the image of

the q volume on the W volume to lose its uniform character. Thus,

one comes to the opinion _hat _he methodical introduction of angle

and action variable used so excellently in other cases, here leads

to disadvantages (cf. Sect. 21 and 21).

One sees that limit decay can also be coupled with real or

random decay. Then amplitudes and the frequency of the Fourier

expansion vanish simultaneously.

9. Keplerian motion. In order to explain the somewhat formal

introduction of the angle and action variables by an example, in

the following the Keplerian motion I of mass m is calculated about

an (infinitely inert) nucleus of load + Ze. The Hamiltonian func-

tion of the problem can be written in spatial polar coordinates

r , _, _ and corresponding impulses.

• 1 9_ I I

Central field potential V(r) will mean later

_sZ

7(r) = -----
F

i) Cf. Ch 7, Sect. 5-7 of this volume.
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The Hamiltonian partial differential equation

&

follows from (i) and can be separated in the following three partial

equations

_s_,__ _,
OO/ "sinZO _--" _'

-_-) +'-_ + 2mV(r) = 2mIV

and

re ,., O. _'.

The meaning of both of the first equations is, as is known, the

theorem of the constancy of the impulse moment, first, its components

in the direction of the arbritrarily assumed polar axis (Fig. 4)

p,, = mr2sin, O(o = o_

and, second, its absolute amount P" =ma_=_..

Fig. 4

r _

Coordinates of the Keplerian motion
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The third equation only reiterates the constancy of energy. The

complete integral of (2):

r

fl - fl /, c*,pdr• o,_, dO + 2,n[W- V(r)] - 7¢

190 f e

arises'from integration (4) in the form of S = S (r, _, _J, _,

c¢_, W). It does not yet contain the action variables as arbitrary

integration constants, but rather three parameters_, _, W, which

presented themselves without trouble during the integration. The

lower limits of the integrals are related to a voluntary initial

point, say to an arbitrarily positioned perihelion passage. The

easiest is to think of these as ascending nodes. If one uses S

in this form as the generatrix of a transformation (which happens

frequently in celestial mechanics) the "canonical path elements"

are obtained (cf. Ch. 3, Sect. 12 (7))

as

(- B I = time of the perihelion passage)
r

(B 2 = angular distance of the perihelion
from ascending nodes),

(B 3 = length of the ascending node).

We do not use them, but first introduce the action variables

J (Sect. 6 (i)) which are normalized as follows:

J,p = dW = 2= _v,

]_ = -- sin'O dO ----- --
W[

,7,= m [W - V(r)]- -_
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fr_ w,hich

S v' / J'_ -dO
= ._ (V;--V'o)+ 4_ --4='mn'O

"/
+ fl,2,.[w(L,Jo,l.,)- v(.)]

rl

(5)

From the defining equation for Jr, in which only both constants

J.,,+Jr, still occur, one sees that even in the case of
W and (x_ = 2=

any given central field V(r) the path energy W can only depend on

4,

Jr and the sum (J_+ Jy), not on J# and /,/alone. In this real

decay of the system 'are expressed, namely the limitation to one

path plane. If one selects V(r) = -_Z/r as it corresponds to the

_Keplerian motion, the integral for Jr can be evaluated (for e_xac_p,le

on a complex path) and will produce

^ _-me'Z

J' = -J" - J" + _=/z_--_':

thus

2 A s _n e t Z 2

W =- (J, + Jo + J_,)"

W is dependent in this case only on a linear combination of

J; the system is "characteristically decomposed" twice, i.e. purely

periodically (Sect. 7 and 8).

The angle variables are determined from

OS OS OS
I



-32-

Then in greater detail according to (5)

"_ OS .

w, = J_-Z_Z at,

• ,7

=/<s +/ U.,+4)e0
w_ j irijo dr " --7=-= J_. ,

r. J ='1 : (l" + l_,)"- s-ln20
O,

F v_

w,, = _-r-a27jar + ........

sin'
O,

0

n sin'S + --
... (l_ + l,_)' - ,.Jb__ 2.

• sin10
_B "" "

The two integrals to be directed over

the help of the relationships

J_' cos_ = sinisin_p,
'. cosi = l_ +I-----_ '

which are found in Fig. 4.

the second to (alf-l_¢o / )/27C.

can be transformed with

sinOp--V_)= cotan_cotan i,

The first becomes equal to (_-_0)/2_,

Thereby_oand_signify the azimuths

of the beginning and end positions of the electron, measured in the

path plane from a fixed direction in them, 3.g. from the ascending

nodes K. _oand _are the lengths of these points measured in the

equatorial plane from an arbitrary direction fixed in them. However,

one must be careful that _omeans the space-bound "length" of the

path point at time to . It can be different from _, that is,

from the length of the initial position marked in the path plane

at time t (and with it perhaps subjected to a precession). If one
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directs the integrals across a complete libration of the r- coordi-

nates, e.g. from one perihelion passage to the next, and takes into

account that for this (Sect. 6 (4))

=o,
re re •o

one obtains the meaning of

2_wi = 2nw,= jmeans anomaly measured from perihelion
position which is perhaps mobile in the

- Lpath plane;

(the azimuth of the perihelion set back

2nm_ = 2_(w_- w,)--- S[in the path plane ;

'angle of precession of the path plane, or2;_wa=2_(w_wo )= the length of some location marked in it,

[e.g. a node.

(6)

Naturally, for the Keplerian motion one must determine that the

last two quantities are constants. Let us then again make a

transformation to the quantities WI, W2, W 3 and the corresponding

action variables. (In astronomy this corresponds to the transfor-

marion to the "Delaunayan path elements'!') The generatrix is

(cf. Sect. 7 (3))

from which :, = A - A,

l,,= A- A,

J,_= A,

A = J, + l,, + l,,,

Ja = J,' + l,,,

A = A,

and (cf. Sect. 8)

-- ._,

W=- j.,
(7)
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In fact, V 2 = V 3 = 0; Wl, Jl is the

"unreal" angle and action variables.

"real" , w2, J2 and w3, J3 the

i0. Definition of the angle and action variables fo___rgeneral

multiple periodic systems. A system is termed r-fold periodic when

its coordinates can be represented as r-fold Fourier series of time

as in Sect. 6, Eq. (7):

qk=_..._a(k)__ -_ ....... e_[( .... + .... :_t+(,:,+...*,::_]. (1)

Thereby one first thinks of the cartesian coordinates of its element,

but every coordinate system proceeding them and their corresponding

impulses by unique transformation can be represented in this form.

(For coordinates not uniquely determined several modifications are

necessary, which can be drawn from the remarks in Sect. 5 and 6.)

All frequencies appearing in (I) are integral linear aggregates

of r fundamental frequencies Vl...Vr, which we presuppose to be

incommensurable since otherwise a representation with less than r

fundamental frequencies is possible. The phases are just such

combinations of the r quantities_(o<= 1,2...r). In order to

satisfy an arbitrarily selected initial state, the amplitudes .

contain further 2 (f - r) constants Cm (m = 1,2,...2 (f - r))

and are, moreover, connected to each other by the laws of motion.

We introduce the new coordinate

w_ = v_t+O_, (_= i,2, ...,) (2)
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and obtain through this the reproduction of the q volume on the

w volume, which is discussed in detail in Sect. 6 to 8:

to which qk= q_(w,....@,),
p_= pl(_,, _',),

(3)

is added.

is also periodic in the w values.

canonically conjugated with the w

From this it follows that each unique function of Pk' qk-

The variables _nknown to us)

are termed J .

In any event, according to Ch. 3, Sect. 6 (3)

[w_,_] = 0.'

For this one can also write

which shows that the expression

is a complete differential. The action integral

is thus a function of its limits. (However, one must remember that

the integration path is only free when R = f. If the system is

decomposed, then it remains limited at the integral.position cm =

constant.)

The integrals ," Wa+l

i #

i ".
till
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which are directed from any given point of the w-axis across a

straight unit distance R parallel to the axis are, as one can be

easily convinced, independent of the initialpoint and thus constant

•along each mechanical path. They are the periodicity nodul&s of

the action function
r ' • *

written in the w variables.

If one performs with the help of (4) a second canonical

transformation (J, w)--_ (J, w), thee w_ values result, which

always increase linearly with time. This is true since the trans-

formed Hamiltonian function can only depend on J_ as a constant,

since the system is to be considered as closed and as related to

a static coordinate system, so that the w_ values are constant.

From this, however, one sees that the function F is a constant

and is actually independent of the quantities w_. The trans-

formation equations produce

I. = aSlOw. = 7.,

and the transformed Hamiltonian function is alone independent of

J_: W = W(]_, ... J,). (5)

The quantities w_, J_ can thus justifiably be characterized as

angle and action variables of the system (I).
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The theorem
l

= (6)
O;

follows from formula (5), as in Sect. 5 (7), for any two motions

of the ___!tiple .... ,.....

value of the action variables. Here as previously it forms the

basis of the Bohrian principle of correspondence.

The characteristics (2) to (5) are sufficient, according to

a proof by F. Hund, to distinguish without arbitrariness canonically

introduced variables as angle and action variables. They thereby

remain un'defined up to a linear integral transformation with the

permanent one since the periodic return of the p- and q- values

in the lattice points of the w value from which we begi,: still

allows the free choice of the lattice cells. Thus, the angle

variables as well as the action variables which are defined as

integrals across the borders of the lattice cells and which are

transformed contragradiently. One can find more on this subject

in the book by Born I.

Pauli.

Ii.

The definitions given here are from W.

The adi=_betic invariants of the action variables.

in the previous sections it was shown that a relatively simple

i) M. Born, Atommechanic I, Sect. 15, Berlin, 1925.
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and clear formalism for the description of multiple periodic

motions was gained with the introduction of angle and action

variables. Its significance in quantum theory extends far beyond

this.

This branch of physics assumes that not every physically

conceivable state of the smallest electro-mechanic systems can

exist in the world of atoms, but rather that there are distinct

stationary conditions which almost appear alone. They must be

characterized dynamically by certain constants in the motion of

the mass points. If one wants to hold closely to the concepts of

Bohrian atomic theory, one must ask what kind of quantities come

under consideration for such a description. Since Planck's, Bohr's

and Sommerfeld's statements it has been shown that the historical

development in which "quantum condition" were coupled with the

action variables, was no accident. They are so suitable, since,

on the one hand, they are geometrically invariant, i.e. independent

of the coordinates used for their derivation. This was shown by

Brody's theorems which were discussed in Chapter 3, Sect. 51 .

Secondly, they are "adiabatically invariant."

by this the following very important characteristic:

state of the mechanical system depend on certain continuous change-

able system parameters ak aside from pj, qj (one considers the

One understands

Let the motion

" = lrcd_- ZS f Phys %_oi 6, p. 224, 1921
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attractive force of the sun on the planets as changeable, for

example), but so that for every fixed value for ak the motion remains

conditionally periodic and possesses the same degree of decomposition.

The motion integrals are then dependent generally also on the para-

meters ak, thus are of form F (pj, qj, ak) =¢_(a k). There are,

however, certain functions of F--thus also integrals--which are

not affected by a change in ak in the first approximation, but in-

stead also remain constants of motion when one conceives of the

parameter ak as being invariable,_insofar as its variation only is

accomplished slowly, so that it is imperceptibly small during a

quasi-period of the fixed system. These integrals alone are the

action variables. For this reason they are especially suitable for

describing the "states" of atoms subjected to many perturbations.

As understood by quantum theory their condition also remains

"stationary" with sufficient slow perturbations, and one can

imagine that the extraordinary stability of the atoms with respect

to the slow influences is associated with the constancy of the

action variables. The effectiveness of sudden influences (shocks,

radiation) cannot yet be explained.

The thought process of the proof for the adiabatic invariants

of the action variables is as follows: Let the Hamiltonian function

of the system be, aside from p and q, dependent on the parameters

a (t) which are variable with time. One follows the influence of

their variants in the limit a-_O and simultaneously expands the
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calculation over a time T so that the integral /;,dr contains

the finite valued. In any point in time the motion will not be

very different from those motions which are additionally periodic

and which would appear for a constant a. For the latter one

could introduce angle and action variables with the generatrices,

S(q, J, a) according to the manner shown in Sect. 4, 5 or. 6. One

now uses this same transformation, although a varies and Jk is not

completely constant, but rather procedes from the canonical equations

bJk -- c_J. ' Ow.

variably.

Hamiltonian function K is

K = _vu'_ .... l., ,') i ,:a

According to Ch. 3, Sect. 3, Eq. 6, the transformed

One must now presuppose that the variation of a occurs without

being related to one of the motion frequencies--the simplest would

be to assume that this occurs uniquely. Then, principally for

frequencies (,_)= ,_i + "'"+ T,,,,.which are independent of a and not

equal to O,

lim [i_e_"_[_"_t+c's_ldt = _ma 2hi(,,,) = O. ' (2)

T

This also holds true for frequencies which are dependent on the

integral. The integral can be divided into partial integrals over

so that
°



-41-

quasi- periods and in every section the integrand can be expanded

by t. Then the first expansion numbers again give the expression

(2), and it can be shown of the others that altogether they amount

to nothing in the limit case _-_ 0.

Now in formula (i) the expression

I

•81_,_(SSl_a). is to be

thought of as a Fourier series without a constant number as long

as it is derived through a characteristic angle variable. This

_ True since _-he derivaziG_ has e_zmznaced a_ che numbers inde-

pendent of w k so that only numbers remain whose frequency (Tv)

contains a portion _kVk with non-vanishing T k. If one thus forms

_' , if' ......

one may include

f J_dt = O,

if in the course of time T one of the frequencies (Zv) does not pass

the 0 volume, i.e., is the system procedes through a state of

further decomposition. I Under closer observation this is of course

such a serious limitation that the practical value of the calculation

would be small if one were not able to be, by and large, rid of it.

Since, as was shown in Sect. 8, the positions of random decomposition
I

i) The original proofs up to this point exist in P. Ehrenfest,

Ann. d. Phys., Vol. 51, p. 327, 1916; J. M. Burgers, his disser-

tation cited in Sect. i and Ann. d. Phys., Vol. 52, p. 195, 1917;

G. Krutkow, Amst. Verl., Vol. 27, p. 908, 1918; cf. also the summary

by P. Ehrenfest in Naturwissenschaft, Vol. ii, p. 543, 1923
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are even closely situated with continual changes of the frequencies.

Von Laue 2 has shown though that the constancy of Jk also is presumed

when one of the frequencies (%v) vanishes but not more than a

power of _. This proves the adiabatic invariants of the action

variables for most cases. The proof does not extend to' uncharacter-

istic action variables. This is, however, irrelevant in quantum

theory since they do not influence the system energy. Moreover,

he makes clear that the invariance stops when the "adiabatic

transformation" is directed across a finite distance far beyond

a condition of decomposition.

Examples of adiabatic transformations:

whose string length is gradually shortened.

a string pendulum

An oscillating string

which is gradually shortened by directing an elastic tube from one

end toward the other. A plane oscillator whose potential ellipse

is slowly deformed or rotated and so on. The last case can be

constructed easily so that the invariance of the action variable

stops: during the transformation of the axes of the potential

ellipse, one can stop at one at which both frequencies ( the x

and y waves) are commensurable. If a finite section is rotated
J

in this deomposition state, and if the binding forces are further

changed, then the J values are changed. I

i) Further references and examples are found in P. Ehrenfest,

l.c.; N. Bohr, Quantentheorie (cf. footnote in Sect. i).



-43-

Ill. METHODSOF PERTURBATIONCALCULATION FOR THE
HAMILTIONIAN FUNCTION INDEPENDENTOF TIME

12. Preliminary remarks. Before a description of systematic

perturbation calculation is given in Sections III and IV, one

would do well to remember that in many cases in which one only wants

to obtain a limited goal simpler methods of calculation can fulfil

this goal. Much use will be made, however, of theorems on pertur-

bation calculation for this (e.g., of the the theorem that the mean

value of the perturbation energy of the first order is a constant

across the undisturbed motion, etc.). Thus, several perturbation

problems for Kaplerian motion can be eliminated in the first approxi-

mation in an elementary manner; cf. the calculations by Bohr I, Lenz 2

3
and Klein on the hydrogen atom in exterior fields.

Furthermore, the calculation of energy perturbation in the

first and second approximation is accomplished with the help of

the adiabatic method without actually using perturbation calcula-

tions, i.e. by drawing in theorems derived in Section ii. The

procedure was used by Kramers 4 and by Shrodinger 5 and was proven

i) N. Bohr, Quantentheorie.

2) W. Lenz, ZS f. Phys. Vol. 24, p. 197, 1924.

3) O. Klein, ZS f. Phys. Vol. 22, p. 109, 1924

4) A. H. Kramers, Dissert. 1919; Copenhagen Academy, Vol. 8, III

1919; ZS f. Phys. Vol. 13, p. 312, 1919

5) E. Schrodinger, ZS f. Phys. Vol. ii, p. 172, 1922.
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by the latter in a simple fashion. The systematic procedure is to

be preferred for the calculation of higher approximations.

13. Th____eSemiconvergent character of perturbation calculation.
P

After having developed the formal system for the description of

multiple periodic motions in Section II, we might ask whether or

not more general motions can be approximated in many cases by

conditionally periodic motions. The proxess which has been developed

for a long time in celestial mechanics under the name of perturba-

4.

tion calculation has precisely this goal.

The pure Kepler motion of a planet is, for example "perturbed"

bu the presence of a second planet. The complicated motion which

occurs can be considered in every time element as a part of a

suitably selective Kepler motion; but, however, its path elements

will change with time. If one now views these quantities, which

were earlier fixed, as coordinates, one is making analytical

use of Lagrange's method for the variation of the constants I.

This becomes itself an approximation procedure if one considers

that the forces emanating from the disturbing planets usually

(i.e., in a certain region G of the coordinates) are small with

respect to the attraction by the sun in the proportion _ of the •

masses of both bodies. Analytically speaking, this fact corresponds

• P

i) H. Polncare, Legons etc. (cf. footnote from Sect. i) Vol. I,

Ch. IV and V.
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to a development of the differential equations of motion by powers

of _. According to a theorem by Poincare _, the possibility of a

similar expansion of integrals follows from this I.

Meanwhile, the success of this procedure is dependent on two

things: First, one must always consider whether the integrated

motion also actually remains in the region G, so that the presup-

position of the series expansion remains in force. Second, one

will only be able to obtain a complete (i.e., convergent) termina-

tion of the disturbed motion when it itself is conditionally periodic.

q

Thus, the question of the existence of unique integrals (the action

variables) for the perturbed motion arises. The proof of their

non-existence can be made in certain cases according to a method

by Poincare" (these cases are in fact the rule)• How will this inner

contradiction express itself in tbis approximation? It will occur

in a two-fold manner. Either the differential equations will not

permit formal integration at a definite point in the expansion

(the calculation can simply not be done then). Or--this leads to

the peculiarity of perturbation calculation--one can formally pro-

duce the description by angle and action variables, the conditionally

periodic representation, by applying the coordinates as multiple

Fourier series and determining their coefficients according to a

• f

i) H. Polncare, Methodes nouvelles, Vol. II, Ch. VII and XIII.
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certain calculation pattern. Then, however, the series obtained

will not _onverge. In spite of this they have acquired the greatest

practical significance for celestial mechanics and physics because

of their semi-convergence, which permits one to calculate with them

as with convergent series. The evaluation of the error permitted

here requires convergence investigations, for which one can apply

references in Poincare 13.

14. The arbitrary, multiple periodic statement for the per-

4,

turbed motion. Let

H-_ HI + H,= W

be the Hamiltonian function of a mechanical system, a total

system and

H, = Wx

that of a partial system, whose conditionally periodic and thereby

s-fold motion is drawn. It is described after (according to

Sect. 6 or i0) one has introduced the angle and action variables

Wk° , Jk° of the partial system with the help of the transformation

equations
+OO +oo

=_." X'at_, e2-+(,,-:+...+,t,_),
-- OO _ r| .,. rf "

+OO +oo

pj =_.]... _b_' e2"q',':+"" +'r'_)
-_ _ ft... r f I

(1)

by the conditions of time

],,__constant (k= _.2 ...... /)
.

i , _ttl -

'"' --- _JT_t + ,5", (o_= ,, 2..... / - s,

I _ ,o,eup,. constant' (e = t- s + I, 1,

Characteristic
variable

Uncharacteristic
variable
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The transformation equations (i) contain a canonical transfor-

mation independent of every definite motion problem (c.f. Ch. 3,

Sect. 3). The variables w_, J_, are also canonical in relationship

to the Hamiltonian function

H _ H,_) -k H_(JV_, _e' w°' w_e) = W,

o

whose first member H I can only be dependent on the J_ values

according to our presuppositions. Actually, in the motion of the

total system they are no longer constant or linear in time, but,

o change in someon the other hand, the quantitiesJ_W e,

fashion. The laws for their variation are the canonical equations

o
written in terms of w_ and Jk" a

;en
_H _

= = --_7_'

..

It will not be superfluous to spend a moment with the new

significance of the transformation equations (i). By formally

permitting the Fourier series to exist one allows the path region

of the q volume to reproduce itself on the unit cube of the w °

volume and allows this image to repeat itself periodically in the

w ° volume (cf. Section 7)" However, because of the variability

of the amplitudes in the Fourier series (i) one must consider

also that the path region in the q volume has changed, perhaps

is no longer even fixed.

teristic Fourier series.

The equations (i) are still only uncharac-

With the linearity of w° in time and

O
with the decay of w ° the progress of the path curve in the w line

stops completely. Nevertheless, something can be said about the
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change in w_ without calculation if one assumes that the motion

of the total system is conditionally periodic. For this motion

there are new angle and action variables wk and Jk which are related

to the system position by characteristic Fourier series.

ra.,,f
-oo , :.-oo /',

+oo +oo

pj =_'.'... "_-'B_ _'e2.',..,',_;+'..
- o= _ ,,...rr , +'r wt)

We now trace in the q and w ° volume and in the w volume a definite

motion of the system which we direct voluntarily along a straight

unit distance parallel to the wj axis in the w volume. Thereby,

the system in the pq volume returned to the initial state on a

certain cuy_e. In the equations (i) the left sides and on the right

the amplitudes a, b (which are also multiple periodical in w as

unique functions of p, q) have reached the old value. The arguments

w_ have thus certainly attained values which differ from their

initial values by 0 or some whole numbers. If one now still

assumes that the influence of the perturbation on all w_ is small

with respect to their Eigen motion in the unperturbed case, it

follows that w_ has also increased by i, but that the other w_
o

_alues have not increased. This means the same thing as the relation-

ship between new and old angle variables

in which only the coefficients of a Fourier series are still

undefined.
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Two presuppositions are needed for the proof of this con-

clusion: First, that the perturbed system is also multiple

periodic by setting up the same series (2) without testing, by

postulating the equations (3) and by determining its Fourier coef-

ficients by a formal process, one produces the multiple periodic

representation for any given perturbed systems in perturbation

calculation. However, this path is not always available.

Equation (3) is based on the further assumption that the

perturbation influence on w_ is small with respect to its Eigen

motion in the unperturbed case. This assumption is impossible for

all earlier decayed (i.e. constant _. Equation (3) cannot be

postulated for it, but one must strictly decide by integration

whether the degrees of freedom one is concerned with definitely

behave periodically after perturbation. With every perturbation

calculation which depends on the reduction of the decay in general

a partial differential equation thus appears which is so compli-

cated that its integrability is questionable.

15. Development of integrals according to powers of a

parameter; intermediate motions. Let the Hamiltonian function of

the mechanical system be expanded according to powers of a small

parameter

H(p, q) =_-Ho + i H, + i s H_ + .... W

and with it the canonical equations

_H
=
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of the partial problem

_:, _ ....Oql °

and if the functions HI, H 2 etc. are expandable according to powers

of _k--PD, (qk" _) for all values of the same, the series expansions

can be found for Pk, qk according to powers of

qk= _+ ;t(,+ ,t_'÷ ..., /
Pk = p_.+ _.p_+ _Pi' + , l

which formally satisfy the differentialequation (2).

ducing (4) into (2) and rearrangement one obtains

+ _ + _'ff+ ...

OH, i_aH__ ,_ ,O'Ho + '_ OHo ,1= _ + t 0p: + --°q_°P: ¢, .q_ _,J
+ _,{...} +...

By intro-

and similarly construction equations for Pk" Thereby dHo/ap_

is used as an abbreviation Of-To/_p_, in which q_, p_ replaces

qk, Pk with an unchanged form of the function, etc.

If one concludes from (5) that individually the coefficients

are (5) that individually the coefficients are equal to the same

powers of_ on the left and right a series of linear differential

P

in place of (2) excepting (3). Poincare has proven that the.

process converges as long as the motion does not extend past the

validity limits set by the presuppositions (expandability of H

byA and by p - pO, q _ qO).

One notices that a certain arbitrariness is associated with
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the procedure from (5) that like powers of _ are eq1111; one does not

need to view them as being exactly equal but rather only as far

as members of the next smallest order. To express this in another

way: Before equating the members which have the same order one can

per fform a certain rearrangement of the series, and, for example,

rewrite the series (i) as follows after breaking down Hn into

H' n + H"n:

H_ (H o+ _H_) +2(HI + _H_ + _2(H_' + _) + ... 1

H_ +_H_+I_Hff+-.. /

This does not change the motion problem of the total system

but does open up a new approximation procedure.

What is the physical meaning of this indetermination? The

entire approximation procedure means that the motion problems are

solved one by one by means of the Hamiltonian functions Ho, H o --_HI

etc., which are not the same as the total aberrations, which become

smaller and smaller. This is called the introduction of the inter-

mediary motions. The first intermediary motion is characterized

by the requirement that it can only deviate from the total motion

by member_ , the second only by_ 2 etc. Of course, a certain

arbitrariness always remains, and one sets up the calculation so

that it becomes as formally simple as possible.

16. Poincare'_ proof for the non-existence of unique integrals.

_j _=ri_=iy taken, the mathematical minimal postulate is somewhat

less (cf. Poincare elsewhere); but is almost always fulfilled when

unique i_Itegrals for the disturbed motion actually exist.

I
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Let the Hamiltonian function of a mechanical system be

H_H0+ IHx+ 22H_+ ...

and H = W be an integral of motion.

further integral independent of it.

In addition let F =_< be a

According to the theorem by

Poisson (Chapter 3, Sect. 7 (5)) the condition (H, F) = 0 must

be sufficient. (The meaning is simple--the gradient of F stands

perpendicular to the phase path element.) On the other hand, when

F =_ is unique in the regions observed, a variation of the theorem

from Sect. 15 which says that F can be expanded by powers of_, can

become

F--= Fo + 2Fl + _2F, + ....

For every unique integral the equation

_',_J_Ho dFo dHo dFo_

k

a ,lfUo dHo _gFx dHt dFo_
,9/,. ,gq. _./+ "'"

holds. If it cannot be fulfilled by any function F, then no

unique integral exists independent of H. It can only be ful_iled

when the expressions in parentheses alone vanish.

One can presuppose (proof by Poincare) that F o was independent

from Ho, i.e., that an independent integral does not first arise

through perturbation. Moreover, it is purposeful to consider

an_!e and action variables cf the unperturbed prcble_ w, J as

introduced for further calculation. Then H o and also F o on account

of the disappearance of the first parentheses, are also dependent
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only on Jk"

between two cases:

Case i. The perturbed system is not decomposed.

parentheses to 0 reads to the equation

For what follows it is necessary to differentiate

The second

If one considers HI and FI as expanded in Fourier series of Wk,

is follows that

(_lv, + .-. r.e'_')b...... r = *k_ ...... r"

In this equation the v_=._Ho/_, , the ##_/aI_, , the bm and B_

are dependent on the Jk values. It could serve to determine the

quantities b_ as functions of Jk from the known Fourier coefficients

of the perturbation function of the first order H I . If Jk changes

continually during variation of the initial motion, for infinitely

many values, one of sums_ will vanish (cf. Sect. 8 on random

decomposition). Moreover, each time an entire class of them,

rather than an individual, namely also£¢_ V_ , insofar as

_ = mTk; in fact, an entire family of classes which also contains

all standing systems_ k not in the same relationship, for which

the sum_rtVK=O for fixedVk. The corresponding coefficients

B_l...r f can be described as the coefficients which become secular
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in a sense which will only become clear after analyses from Sect. 17.

In order that equation (2) can exist at all for any given values Jk ,

it is necessary that all B_ which are becoming secular vanish I. B_

is given by the mechanical problem and in general does not fulfil

such conditions. Thus, Poincare calls families of Br which are

becoming secular and whichdo not fulfill the condition, regular

families and those which fulfill the condition, singular. In the

region of the J volume in which points with regular families are

densely situated, no unique integral of the perturbed motion can

exist aside from H = W.

Case 2. If the unperturbed system is actually S-fold decom-

posed, the condition of non-existance takes on a different character.

The requirement corresponding to equation (2) becomes

OFo

One cannot, thus, demand as was previously the case a simple

vanishing of the (comple_B_ at the points of random decomposition.

The calculation which we do not reproduce here in detail leads

to the formulation below for two non-decomposed degrees of freedom

(e.g. two planets). When the Br, , B_,,... of a class, which can

also be described B(n=) , B(m_)... , are created so that all products

(B,,_m'(Bm')-_ of this class are only dependent on 2s -/_ of the

f + s variables _, J£, we, the class is called singular of the
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_-th order. In a region of the J volume in which points are

situated densely, whose corresponding classes of B_are only

singular of the_-th order at most._ independent unique integrals

"of the perturbed motion can exist aside from H = W.

The Poincarian proof of the non-existence of a fifth unique

integral in the problem of three bodies (which we consider to be

related to the mass point so that the sixth mass point are not con-

sidered (is based on such an observation). If one represents the

positions of each of the two planets the purely periodic function

of its mean anomoly w' or w" (cf. Sect. 9) as is calculated for

vanishing simulaneous influence, the perturbation function becomes

a two-fold Fourier series in w' and _':

/-/, = N22 B,',"

Of the products (B,,.,,..)". (B,,,.,, ...)- " of a class always six, but

not five, are coupled by a functional relationship as Poincare has

shown. Thus, only 5 = 2s -,_4 = 8 - 3 are independent of each

other. Therefore, aside from the energy integral there exist still

three further unique integrals--the surface theorems--and no more.

17. The Method of Secular Perturbations I. This is a prede-

cessor of the later complete expansions which has become famous

by its astronomical applications. It was the first to be trans-

lated into atomic mechanics by himself in his Copenhagen Academy

i) Cf. Poincare, Lecons etc. (cf. footnote from Sect. i) Ch. VIII

and IX.



-56 -

I
Studies Although actually only a part of a comprensive method

for calculating the perturbation in initial systems actually

decomposed cf. Sect. 19), in most literature, it is usually

abbreviated and not presented in the strict form of Sect. 15.

We will now reproduce it in the usual way.

It is useful to present a certain graphic image for the cal-

culation, as the simplest example, the perturbation of the Kepler

Path of an electron through a constant homogeneous force field

("Stark" effect). The Hamiltonian Function written in the angle

variables in the Kepler Path has the form

H-- H0(_) + _, 7o, _, _) = W; (1)

w_ is the mean anomaly of the planet according to Sect. 9,

Equation (6), J_ the conjugated real action variable (proportional

to the root from the large axis of the path) appearing in H
O

according to Sect. 9, Vquation (Y); the unreal variables,

are the azimuth of the perihelion and the precession angle of the

plane. Since the transformations (p,q)-_(J°, wO) are given

by Fourier series of w_, we have to imagine H 1 as the periodic

function of this quantity. For instance, H I means the potential

of the electron and the outer field F during the "Stark" effect.

If its force l'ines fall in the direction of the polar axis (z-Axis),

then H I -- -eFz, wherein the z-coordinates of the electron revolving

in the path are represented in the unperturbed case by a charac-

teristic Fourier series in w I in whose amplitudes the remaining

i) N. Bohr, Quantentheorie (cf. footnote on Ch. i)
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(constant) path elements appear. The parameter indicates in the

general case the relationship of the perturbing forces to the

inner forces of the unperturbed system and is small in respect

to one.

From the canonical equations
-,_ _Ho . _H 1 .jj c'H,

• _H, -,:_ _H, (2)
)'i'=

one sees that the change in the previous constant path elements

proceeds very slowly while the frequency of the unperturbed path

revolution v_ =_Ho/_J _ is of Order i.

One can divide the notion into sections which are given by the

growth of w_ always by one unit, and the time segments T' T" , • ° °

corresponding to the approximate size of a period T of the unper-

turbed path revolution. However, one can further resolve the rate

of change X given in (2) of a path element x in every time segment

T (n) into a mean rate of change--we will indicate it with Dx/Dt--

and the deviation from it. Then, Dx/Dt will be reliable for nearly

uniform perturbations of the elements, which are in fact small

in the individual segment and of order_ , but which can amount

to finite sums in the course of many segments; one calls them-

secular perturbations. Short periodical oscillations will rest

over this, approximately in the rhythm of the undisturbed path

revolution, and they will never exceed the quantitative orderS.
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We now turn aside from them since in the next section a general

procedure for calculation of such short periodic perturbations

will be described.

In order to calculate secular perturbations, we have to

average the equations (2) over a section T(n). At the same

time the mean time of_t/_appears on the right. One can be

easily convinced that it differs from chronologically linear growth

only by quantities of order _ 2 because of the small deviations of

O _

J_, w_ from the constancy and the quantity w_, from the value _/4,/_

understood to be under ITI the spatial mean value of H I across the

o
unit distance of w I or the mean time over a period of that unper-

0

turbed path which directly oscillates the actual path. Accordingly,

o J_, w_) in place of H I in (2)if one inserts the mean value F[I(JI,

the original step-curve like definition of Dx/Dt is substituted by

a uniform definition. From Equations (2), since H I no longer

depends on w_

Ow_ • (9H1 _2..
o--T= _ + __Tf + "'

DJ'l _ 0 + _ ....
Dt

°.__Ji= +
Dt

(3)

and the equations lead to the further conclusions that

D--T = (gJ_ Dt +,,_ -_ Ot +# _ Dt " (4)
¢

one discovered that both quantities J_ and HI only vary secularly

i
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with speeds_ "_m Thus, in times of quantitative order T/_

they only increase by_ , and this remains true when one

O

also assumes that Jl is subject to short periodical fluctuations.

In such times, on the other hand, the w_ , J_ are subject to

finite growth.

If one further assumes that the motion of the system remains

periodic or conditionally periodic with the inclusion of the

°perturbations, the J , wo values return to their initial value
d

individually in intervals of order T/_ , and one can conclude

O _ _that Jl and are not only constant in such time segments, but

are continually constant up to fluctuations of order_ (In the

case of conditional periodicity this conclusion does not seem to

be absolutely mandetory since a quasi-period then has order T/_ ff°_

but this objection disappears under closer consideration, which

would be too involved here.)

o (thus the large axis of theThe continual constancy of Jl

ellipse) is the first premise which the famous Laplacian proof

for the stability of the planetary system is based on. We see

here that it is indeed quite right to begin from the postulate of

the conditionally periodic total motion. This characteristic is

Q

in no way proven; on the contrary, the result of Poincare's investi-

gations (see Sect. 16) is that there is no conditionally periodic

motion present even with the three body problem. This is the reason

why the Laplacian stability proof can no longer be taken as a true

proof; it only shows the constancy of the large axis for long, but

not arbitrarily long times. The second half of the "Laplacian proof"

"which bases the constant smallness of the eccentricities and slopes
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on the approximated constancy of the large path axes, stands and

falls with the former.

For our purposes we have acquired the fact that, presupposing

conditionally periodic total motion, the mean perturbation potential

HI up to quantities c"_ _t are set constant and the variable J_

in it can be viewed as a constant. This reduces the secular equa-

tions (3) of the J_ , w_ in the first approximation to a motion

problem s = f-i degrees of freedom. (s, as previously, is the

degree of decomposition), which is given by the canonical equations

D---T= 6]_ ' --D-/-= e=,; (4)

and the "energy equation"

_t

if it is possible to integrate the problem, for example, over the.

Hamiltonian partial differential equation

this finally justifies the supposition on the conditionally periodic

character. One can reduce the angle and action variables w¢ , J_

in such a manner that W I alone becomes a function of the Je values

o J_ are represented as periodic functions of thein that the w_,

w_ values which increase linearly with time.

18. Perturbation of a non-decomposed system. We now turn

to a presentation of the current form of the perturbation calcula-

tions, a logical completion of the expansion by a parameter_

Cf. H. Poincare, Methodes nouvelles, Vol II, Ch. 9, M. Born,

and W. Pauli, Jr. 25 f. Phys. Vol. i0, p. 137. 1922.
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The most simple case which can appear is that of a conditionally

periodic, non decomposed initial system in whose angle and action

O
variables w_ , Jk state the problem:

H = Ho(]°) + ,_H_ fro, wo) + ... + ,l- H. (J°, wo) + .... w. (0

under the arbitrary assumption that the perturbed system is also

conditionally periodic we look for the new angle and action variables

Wk' Jk" After their introduction H alone must be a function W(J)

of the Jk values.

As always the Jacobian method serves us as the integration

procedure_;). Thus, we determine from the Hamiltonian partial

differential equation

\3wO'

a function S(w_, Jk) the genereratrics of the transformation

_S _S

According to the theorem by Poincare of ('Section 15) the determina-

tion of the Jk' Wk values has the form of a power expansion by

We thus state:

S=S o+2S l+_2S 2+. +_."S,,+....

since according to the presupposition none of the old angle variables

is decomposed during the unperturbed motion, but rather that all

w_ values have finite rates of change "'; - "-/_,_d'_ we postulate

for each of them an equation as in Section 14 (3):

lln Sect. 15 a direct integration was performed without trans-

formation by a new variable. The fact that the zero vector of the
coordinates is used in a different sense there is associated with this.
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From this one can conclude in comparison with (2) that S0=_/k_

and that all other aS,/afk, , thus also the Sn values themselves

are periodic functions of the w_ values with Period One.

Taking (2), (3), (4) into consideration, after the Jk values

o and the members of the Hamiltonian
were already intmduced for "Jk

function were duly expanded.

r x--_ ¢)Ho _0St_, }
• _()kH---Ho(I)+_I_. _71 + i-i,(l_)

,,._no_s, ; _, _,no _s,_s, . x.on, os, +n,(l,_)}

Jl" *'''°°'''''''''''''''''°'°'°''***°*'°*°'''''''''''*''*''*soe°sIs*

f X.-_ ¢)Ho _ S. ==,' W.

+ _"l'_ e:-__ + +.(1:)__ +

.... ' 0 bzw its derivation lieHoU),OHo/_fk etc. means that in H0(J) • or

O O

Jk the Jj substituted by J. in an unchanged form of the function.
]

The quantities .aZ-fd6Jkare thus nothing more than the frequencies

# of the unperturbed motion, which would assume it for theV¢

o = Jk The functions /_ are sums of numbers,fixed values Jk

each of which contain one of the functions Ho...H n or its derivations.

And, moreover, most contain factors ;:'_ "" "ooi/_u_ = I, 2 ..... n --:t)

thus only functions known in the n-th step, which are also all

periodic in the w_ values with Period i, so that _ n can be

written as

+oo +oo

#" =__"_ _.'-'_-'A_"_','"ee2'*iO'w_'+" .. +,f w}), (6)

From the differential equation (5) we individually draw the

equations

_-,_o + _,(l w°) = W.. (7)

Sn must be, as was shown above, a periodic function of

o
wk ; thus, we state undetermined coefficients
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+_ +_o

_'B" e2" i ('. w_+" ""+'t'q)
-oo -oo

(8)

and gain comparison of (6), (7) and (8), when we indicate the

purely periodic portion of _(without constant number) with

A (m)

Z OS. __ q_,_, Be,. ...... r_'__n_ = --"..... , -- 2.',i_,: (9)

with the exception of Boo...o , which remains arbitrary (however,

is immaterial as additive constant in S). Moreover,

W,, A I"_ == o.o (io)

follows from (6) and (7). This formally completes the definition

of the functions Sn, thus also those of Jk, Wk" In addition,

W resulted in the function of the new action variables of form

_-- Wo_ + _,_>(f) - ... + i"_L,C/) --i-,--., (ll)

of which we give several members:

w0 = s00O, wl = HI(J), W. = #._}.

The process is best applied to the needs of quantum mechanics

since it permits one to determine the n-th approximation of the

energy already after n - i steps. The first approximation member

W I is found to be the chronological mean value of the perturbation

function of the first order taken over the unperturbed motion.

Let us observe the connection between the old and new variables
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and forget for the moment the question of convergency. Then

oo

n=l

_"T ..OS.

n=l (12)

the unperturbed motion is overlaid by small fluctuations vanishing

with _ with approximately the old finite frequency. Thus, only

the so-called short periodic perturbations occur here, not the

secular perturbations described in the last section.

The question of the convergence of the series contained in

i
(8) and (9) has been discussed best in investigations by Bruns .

o
Since according to our presuppositions the frequencies vk are

incommensurable for unperturbed motion, the denominators in (9)

for the old values Jk certain do not vanish exactly. In spite

of this they can become as small as desired for certain combinations

of the Tk values. Bruns has shown that the numerical-theoretical

character of the relationships]) °i :''':])_ is decisive for the

convergence of divergence of the series in such a manner that

infinitely many convergence and divergence positions lie in a

o
region of they k values which is still so small.

As we l_..c._,t._.e indi_-idu_! -_ember of t.his series never con_-erges

ivr all rational proportions contained in it. That which holds

I) H. Bruns, Astron. Nachr., Vol. 109, p. 215, 1884; C. L. Charlier,

Mechanik des Himmels, Vol. II, p. 307, cf. Sect. i, footnote; H.

Poinc_re, M_thodes nouvelles, Vol. II, Ch. VIII and Xi]]!.
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true for the_ region also holds true for the region of the

Jk values on account of the uniform functional co-relationship.

Thus, one comes to the conclusion that the function S defined

by (8) and (9) is no uniform function of the Jk values. With

this all the suppositions of the calculation are destroyed, e.g.,

the equations (2). In spite of this, astronomical practice

shows that the series (8) are of greatest significance. Calculations

of great accuracy allow that they are discontinued at suitable

positions. This is due to their semi-convergence, to which

Poincare has devoted several investigations, which, however, are

i
not final.

19. Perturbations of a characteristically decomposed system.

If the initial point is characteristically decomposed, the pro-

cedure from the previous section cannot be applied since the

uncharacteristic angle variables are then constant in the unper-

turbed case, and we know from Sect. 17 that the perturbation pro-

duces secular finite changes in them. The postulate for Equation

(4) from Sect. 18 and the statement (8) connected with it, as well

as the completeness of the differential equation (9) are lacking

for it, but are attained in that one first observes an intermediary

motion which contains the secular perturbation, so that the total

motion only deviates from it by the member o._ _ .

I) H. Poincar_, op. cit..
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From the complete Hamiltonian function

___o(jO) + _,(io, jo, _o, _o) + ... + _,_,O,o, _,_ + .... w

we next select a portion

i_* _ _o(J °) +/,(6 (jo, jeo, weo) = Wo + _tw_

According to Sect. 17 we suspect that G =_l

(1)

(2)

but we delay the

decision 10ng enough so that this selection proceeds directly

from the context of the following calculation. The integration

of the motion problem (2) is completed with the help of the old

procedure: one looks for a generatrix

0 . _)so=22J: _ + r(l:, _, (3)

of the (finite) transformation

dSo " t_So
_ = _j_ ' _ a_--_.= l:"

dSo dT

in new action and angle variables J_, w_ to be determined from

the differential equation (corresponding to Sect. 17, Equation (5)).

( _T _)=W_.J:'_,.---_' (4)

A general way of solving it cannot be given (cf. the comment in

the close of Sect. 14), we will assume that it is integrated.

After introducing the J_, W_ in (I)

n_n_) t z[_,(/_,_)- _(1_)] +-..+ _"_.(1_,_)+ .... w. (5)

arises (we now write the transformed forms of the function with

Latin letters, however, H o =_o)" At the same time H_ consists
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of two parts of various orders of magnetude:

This also causes the motion frequenciesV_ of the previously

corresponding and non-corresponding angle variables to have various

orders of magnitude:

• . _H: c..TH; . g,G (6)
_--_-_ _, _,;'..... _-]; _;..v*- ,q. _j;

If one now wanted to apply the procedure from Section 18

to (5), i.e., introduce the final variable Jk, Wk with the

help of

oo

k n=t

w, w_' + Z_." ,DS.. x--_j.,,_S:= oj,' J_" = J" +._ ),L-
(7)

as a result of (6) of coefficients B '_ for which the _,_values
T a ... r f ,

are equal to 0 would be proportional 1/4. because of the denominator

in Sect. 18 (9). I.e., a certain part which already belonged to

the (n-l)th approximation would be extracted.

In the case of the first approximation this can be prevented

by causing all portions of the member from (5) subject to _ which

are independent of the _ values, i.e., all amplitudes A 'z',,.:.,:(r_-=0)

to vanish. This occurs by the selection of G = HI' which is found

to be free of arbitrariness (one subsequently also sees that it was

permitted to assume that _ was independent of the w_ values from

the beginning. (The secular perturbations are completely defined
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by the function _ l(W$)' and the calculations from Sect. 17
I

are found to be beginning of a detailed approximation procedure•

In the later approximations, however, one cannot avoid the

i
determination of each function Sn_ I in two steps One, there-

fore, expands the function (5) with the help of (7) on the

,

position Jk=Jk and if one considers that G = H_,_ one then

obtains:

f _ cnH, dS, }

• .......s._,,H,, H.)}=W.

The equation corresponding to equation (7) from Sect. 18

__ -.#t[o----.--.-OS"_-'_ _H_ _S._, + q5 (S,, ,.. S,,_ _, H o, ... H,) = W,, (8)

can primarily only be averaged over the unit cube of all Wk,

which we will indicate with two bars, and produces, since neither

of the two sums possess a constant member,

W, = @,.

One notices that nothing more is added to the initially calcu-

lated values of WI(=HI) and thus the following theorem also

holds true here: the first correction of the energy value is

equal to the mean time value of the perturbation energy of the"

c___=r, taken over the unperturbed path. Second, one can

average it over the unit cube of the W_ values alone (i.e.,

over the chronological course of the unperturbed path), which

• Opposed to this, an opinion earlier expressed by the author

(2 s.f. Phys. Bd. 35, p. 224. 1925).
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was previously indicated by one bar. The result

es._,
• @ _Je Ow_ q- o'=wn . (9)

wastaken from (8). The difference

/ from Sn is determined asarises from this. The portion Sn

previously from this linear differential equation through

proficient comparison of the Fourier series A further portion

,

Rn, which is only dependent on the variables we, remains undefined.

It can subsequently be determined in a similarly simple fashion,

however, from the equation

.... .- _ W_+ 1

_Je _% ".. ,

corresponding to (9) since it has been determined that

I

does indeed depend on Sn, but not on Rn,
so that the known

n+l

Fourier numbers appear again on the right.

The procedure is not valid for the practically important

case of _i = O. In this case one first has to eliminate H I

by a transformation of form (7) and has to calculate the secular

perturbations from the mean value of the new function H 2 which

then results. Thus, not only the mean value of the original

function H 2 lends reliability to them, but also a member stemming

from the short periodic perturbations of the first order I.

i. One can find more on this in a work by M. Born and W. Heisenberg,

__r.n.d. Phys., Vol. 74, p. i, 1924.
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20. Perturbation of a randomly decomposed system. The

method one must use in order to investigate the perturbations

of a conditionally periodic system in the neighborhood of a

point of random decomposition is of a somewhat different form

for the following reason: in principle one must always maintain

that the action variables of the perturbed system are indeed

natural constants of the motion but are variable quantities from

path to path. It is only in this manner that the generatrics

S(J, w °) of the transformation (jo., wO)_> (j, w) can be con-

sidered a function of _he.. s_e and c_n attribute a _e_ning to

the transformation equations

os as
- = (i)

8

Physically, the need also arises to investigate not only the

perturbation of the one, exact randomly decomposed motion, but

also its neighboring motion (for which the critical frequencies

do not, in fact, vanish, but become very small). Mathematically,

the position of random decomposition is characterized by quite

o * o ,

definite values J_ = J_ , Je -- J_ of the characteristics and non-

characteristic action variables of the initial system. The pecu-

liarity of this case appears most clearly when one holds com-"

pletely to them in calculation and makes certain, for example,

that the new expansion of the Hamiltonian function (cf. Equation

(5) was acquired in Sect. 18) is undertaken at the critical point
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itself. Thus, things must be arranged so that the left series

of the transformation equations (i) contains the form
o *

Jk -- Jk + members which vanish with _ ;

thus, S is to be written

S E * o-- JkWk + a segment S'j which vanishes with (2)

This is the one and probably most important difference from

the earlier cases. There is a second. While during character-

istic decomposition of a system the decomposed angle and action

variables carry with them a certain arbitrariness (they are, in

fact, coordinates for degrees of freedom, which are not used in

any motion of the system; they are therefore not characterized

by she motion either), this arbitrariness in the selection of

the non-characteristic variables is only eliminated during random

decomposition. Here they are uniquely defined by the possible

that the secular perturbations, which again must first be

investigated, are not applied as strongly here, so that an

approximation procedure is sufficient to calculate them.

After these preliminary remarks we turn to the task itself,

whose solution stems from Bohlin I.

The Hamiltonian function can be written in the action and

i. H. Bohlin, Behang till K. Svenska Vet. Akad. Handlinser,
Vol. 14, Issue I, No. 5. Stockholm 1888; cf. H. Poincare,

Methodes nouvelles Vol. II, Ch XIX and XX; M. Born and W.

Heisenberg, ZS. f. Phys. Voi 14, p. 44. 1923.
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angle variables of the unperturbed system

_ -=H,(Io, 7°_)+ _H,(_, _, _,,, _) + •+ ;,"n,.(l o.-,,e)+ .... w. (3)

(The indication of the H i values only with even numbers will

o
become understandable later.) H thus also depends on the J

O

values, but with the conditions

: , OHo = O;
_,_ = Oj---(

* O *

Ho/_J¢ means, as earlier, _Ho/_J_ (JR , J_)-

(4)

The problem is primarily to calculate the secular perturba-

tions and, thus, to acquire a non-decomposed intermediary motion.

They are obtained, as in Sect. 17 and 19, from

(5)

of only s degrees of freedom, in which the J; valuesa problem

play the role of constant parameters. In many cases it is

possible and advisable to integrate the same strickly; in other

cases the Bohlinian approximation procedure, which we will now

turn to, is to be applied. If one then defines the generatrics

T for the transformation on the intermediary angle and action

m_,_, of (5) from the Hamiltonian differenti@lvariables

equation

, '-h--ZW,= , 0% . (6)

then the statement can and should, corresponding to (2) for T
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wherein T' vanishes with _ Moreover, (6) can be sepacated

in '_T/a_,=$_a_ = constant and the cocresponding remaining

equation. In the transformation equations

aT ar'(_:ol)
•:2= _w-_= A*+ a,,,i

(7)

one can thus assume

0w;

to be constant _namely, equal to for the non-

decomposed degrees of freedom.

Bohlin then showed that the expansion of T' must oroceed

by powers of_. This can perhaps be understood by the

following train of thought: If one introduces (7) into (5)

then

.• ,,• {zFw:- o(I., #) -Z,,:z_ = A,,4z° +ZB, z, + +...

with the definitions

1 c_2Ho Z I ¢_SH
Ae° 21 OJe Jo _, 2! Je OJ,,

= "3 "' Be= 0 " • ,4_,

_, a oj,,Ja •

The left side is constant since the quantities_ are arbitrary

constants which only serve the purpose of freeing the $_ from

the fixed values J; • One sees that the "variable quantities be

_"_'_n "must be of order order to equally divide out the changes

in H 2. We thus postulate that

T= ,_,t,,,,o + }_-Tx +._r s + ... (8)-d-_,P k ,--k

and obtain from (6) with aoo = Aeo , _b e = Be, _c = C

H * .t_- _-"I * "OTx

0(4.:;) + v,_ ,'._,,
(6')

+ a_{h + _q}, + .... w;' - Wo+ :w, + ,tw, +...
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and from this partial equation

" }] fT* T*_ "oLa,, Je / Wo,

a_ a_o + bo ow; +c ÷ • =
Q o Q

the constancy of

(90)

(91)

(92)

_T_/_o_ , which was to be predicted, follows

from (91) ; we therefore postulate, by including in T I primarily

those integration constants _ which happen to appear directly, and

only later substitute them by the action variables _,

and obtain

a T 1

__ _ _ 0r_ -Zs_ + r_(_).

T_ is defined from (92). In spite of the fact that this differen-

tial equation has a much more simple character than (6) which it

represents, no general solution for any given H 2 can be given.

The Bohlinian approximation procedure does indeed simplify the

calculation of the secular perturbations (this is all it does),

but it does not make them mandatory. Nevertheless, we assume that

(92) is integrable in some way or other, say, by separation. In

the result one obtains T I as a function of the w_ and from s arbi-

trary integration constants, in whose place we intrcuduce the phase

integral
f_Tl • o

as in Section 6 so that

arises.
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Here we end the approximation procedure. It only serves

the purpose of providing the secular perturbations in the first

approximation. We therefore arbitrarily set T 2 = T 3 =

but have not integrated (6) or (6'), bu_ the problem

--0,

H_'- _l/,_(h_ a,{}, ..... ;;,*. :,o-;T.w, + zw,. (10)

A further comment must be made on the introduced quantities

_k" They are not the action variables of (i0), which one already

sees, since they are not transformed into the values 3_ for 4= 0.

These would be defined according to Section 6 (I) by phase integrals

_T

$,=: _-_d_..

According to (8) and (8') this produces

= -7. + _:f_, (11)
,%-- .&*c:d_o + V_-_.,

and the canonically conjugated angle variables with respect to

H are
aT _Tl ----UPs,

c_T cgTt

It is more useful for what follows to retain the variable pair

m:!'. _" canonically conjugated with r_spect to .:) = (It-- Wo)l_

Thus, a canonical transformation of the character of Equation

(ii) in Chapter 3, Section 3 is woven into the calculation.
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One must remember, however, that the quantities _ do not

possess the property of being action variables.

In the coordinates selected the complete problem (3)

to which we now turn is written as
W -- Wo

or

b _0(e,) + ¢f{,_,,_-_'_)+ _(_,_)}+ ...+I/_,_,(3_,_)+ ... w,

One sees that we have arrived at a characteristically decomposed

problem whose secular perturbations are already known, and that

the perturbation calculation from Section 19 is admissible.

This leads to new variables Wk, Kk, (the former are the final

angle variables, while the _ are only canonically conjugated

with respect to _ . In order to finally arrive at the action

variable Jk of the perturbed motion which are conjugated with

respect to H, one must make use of a reverse transformation

of the variety cited in Chapter 3, Section 3, Equation (ii).

However, this offers no difficulty.

The case where _= _e=0_ is alone important for quantum

theory since the equation (Ii) would produce a continual dependency

of the _ on _ for every other value of the _ _ , which contra-

dicts the basic premeses of this theory (principle of adiabatic

in variance, cf. Section ii). With ._=b" it follows that b_=c=o,
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and Equation (92) assumes the simple form

a Q

of a motion corresponding to the Hamiltonian function

one sees that the canonical equation

are made sufficient by

This is the moron with

• _]j _I_

_e(equal_ the roots of
_H' = 0) =constant

It seems as if the important

quantum-theoretical special solution in which the perturbed motion

possesses the same degree of decomposition as the unperturbed, would

be possible for every randomly decomposed system and with any given

forces of perturbation. One must oonsider, however, that our

conclusions only applied to the first approximation, and in higher

approximations the existence of this solution is still questionable

(cf. Section 22).

21. Example of the perturbation of a limit-decomposed system.

The important case in quantum theory described in the previous

section in which the decomposed variables remain about the center

of libration, cannot be developed in the manner described for higher

approximations. The method fails for the simple reason that the
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functions _n permit no Taylor expansion at the critical points

=j_.,,.% = o
m,,

A simple example may clarify the development of this diffi-

culty and also show that it is not limited to the case described.

We observe the motion of a linear harmonic oscilator whose

direction of vibrations is vertical under the perturbing influence

of the force of gravity, which, however, can be thought of as small

I

with respect to the quasi-elastic bonding in the rest state. The

Hamiltonian function of this system in the usual coordinates
4.

(cf. Section 5, conclusion) is

1 _ r.i)
H _ _-_p, + 2 _2v2mz2 -}- 2Z = _V.

After the introduction of the angle and action variables the

unperturbed system with the help of a Poincard transformation

cf. Section 5, Equation (8)

z=]_ sin2nw°',

The form

p, f2vrnJ ocos2n_ (2)

n _ ,,1°+ z1'/2)°- _2_*_° =-no + ln_ = _. 6)
} 2-_2 1'77_

develops. As in Section 18, Equation (12) One postulates

j0=j v 2.(_°)+""

and again expands H by powers of _ . One then sees that the

old procedure leads to the calculation of the perturbed motion

for every value of d except for J=0, i.e., when z remains in the

center of libration. Then numerous derivations of the perturbation

energy H I become infinite. (more exmctly, it is an expansion by

powers of _ is no longer possible, it is only possible by 4/ _J,

which allows one to recognize the region of convergence.)
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The strict solution of the problem, which was easily found in this

case and consists, as is known, of a harmonic oscilation about a

displaced center, shows that the difficulty is only of a formal

nature.

Apparently it is associated with the introduction of unsuitable"

coordinates. It was explained in Section 8 why the representation

in angle and action variables is unsuitable for vanishing librations.

Actually, calculation with librating coordinates z, Pz would have

presented no difficulty. Moreover_ the position of the displaced

center of libration as well as the inertia in it could be recog-

nized as the possible state of motion from (i) and the canonical

_H _H
equations _=_-#_= o, _,= --_z-= 0

22. Perturbation for limit-decomposition in the general case.

The difficulty discussed in Section 21 always appears when the

libration of any given coordinate of the unperturbed system occurs

with vanishing amplitude; cf. Section 8. (Moreover, viewed from

a purely mathematical standpoint it can also appear in other cases,

namely always when one of the function Hn permits no Taylor expansion

for the values Jk considered). In the direct vicinity of the libra-

tion center the binding is always quasi-elastic since the expansion

of the potential begins there with the square of the dying out

vibrations. Every additional perturbationpotential will increase,
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however, in general (as the gravity potential in the example from

Section 21) even with the uneven powers of the dying out vibrations.

For this reason the governing action variable in the amplitudes

of the perturbation function always appears under square roots for

the degree of freedom to be considered. The understanding gained

from our example can be almost literally transferred to the general

case. Since the representation in angle and action variables is un-

suitable here, for limit decomposed degrees of freedom, one departs

from it and through a reversed Poincare transformation

(Generatrix .' ;plo,, +

S = _- tg2_wo. )
_.

(l)

turns to the coordinates _e,_$' which assume librating values

for small occilations (in the example it was z and the corresponding

impulse Pz)" Written in them, all perturbation functions expand

according to whole powers, also in the center of libration, so that

the Hamiltonian function assumes the form

H _-H0 + IHI + "" + I"H. + .... W,
wherein

• 0 0 0

eo+_,zle_el) + ...Ho= Hoo(J_) +_',-;X,'%,:,+_+_.+ 4_+_'++.+ . ,
{$ o

H,,= H.o(p+,,+++)-"' +'•-r_i".,+.+ + b,+'Z3)
8

• 0 0

0 o

- 0
Thereby, a.e,b_e,cne.....are periodic functions of the w_ values in whose

amplitudes the J_ also take effect. The former occurs with the
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of the case n = 0 since the quantities Co.o.d0e..... can only be

O

dependent on the J_ values; otherwise we may not view the unper-

turbed system as generally integrated. Hno signifies that function

which develops from Hn with _--7_°=0

Those motions of the perturbed system for which the limit

decompostion continues to exist or for which only small oscillations

occur around the center of libration is of particular interest

in astronomy, as well as atomic mechanics. One must consider

though that the latter experiences a displacement by the addition

of the perturbation potentials. One thus introduces the new

coordinates _e= _ --A_. ,_Q= ,i°--Be

whose initial point lies in the center of libration. One must

thereby recognize that the function H written in the new coordinates

is free in all numbers of the first powers of the quantities $_,_ .

The step by step determination of the quantities Ae and Be according

to this point of view can be linked with the successive introduction

of the new angle variables for the non-decomposed degrees of freedom.

The generatrix of the transformation can then be written generally

as

a

whereby the quantities T, A_ ,-B@ are power series in 2, and periodic
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with the
O

w_ values :

T =).T 1 +2 zT, +...,

A e = 2Ale + 22AzQ + ... ,

B e = 2Bxe .+- 2aB2e + ....

with the relationships following from this

a new expansion of H occurs, whose beginning is reproduced here

at least for the case of a limit-decomposed degree of freedom:

n_-Hoo(J.)+(co_2+do_7+eoq2)+ higher powers in _,r/

{ _. dHoo dTl XldHoo _,Bt _-"ldH'oo dAx+ _ _ oL, -_ + _2_, _j_ _ '_/---._-_i-.., a_ o.

+ _(2coAx + doBx) + _2(doAx + 2eoBx) + Hxo(.]'., w °)

I

+ai$+ b_ + quadratic and higher powers in $'_I

+_._0+ .... _r.

From this the definition equation follows for the first

approximation

with

HooGL,) + -_o(_, '2, 1,,) = Wo

Ro = Co,_2 + do_:r/+ eo__ + ...

8

In the second approximation

_oo_ _r' + _,o + _,(_, _, ]_, _:)= wl,

with the additional conditions that the factors

"-,..

(3)

of _and_2 must
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vanish

-'fOHoo c_B1 -'t- 2coAx + doBx + a, = O,

_ _e_14o eA_
_, ¢)J_, -dww_ "+ d°A* +ie°Bx + b, = 0,

(3')

0'5

so that '7

= _ _T, [_6fo- 0d0 _eo_ _

+ q_a + d,_ + e,_fl + .-. --=-C1_* + D]$_ + E,_* + ...

remains for R 1. The equations (3 j) .(3") define A1, B1 as Fourier

series of the w_; they are not significantly different from the

definition equations otherwise common in perturbation theory.

The situation is otherwise with Equation (3) for T 1. If one could

assume that in R 1 (which only contains powers of _ , _ beginning with

o
the second) the w,_ only appear in the same combinations as in the

rest of the equation (3) i.e., that the equation would be separable;

then, after dividing the constants W I into two other UI.+ Vl, the

definition equation for T I would result.

_l_Hoo OT,
,V_, _w: +H_0= u_o,,).

From this, T I would follow in the usual manner

R, (U1, _, 7) = Wl -- UI

and would remain as a function of J<, _ and _ alone.

Apparently this prerequisite, which expresses the conditionally

periodic character of the perturbed system, is not fulfilled in

general; and a method is lacking at this point which formally

produces this characteristic--at the cost of convergence. This



- -84-

deficiency has not been considered in many studies on the subject.

We limit our_olves here (as in the calculation of secular pertur-

bations simply to the case in which equation (3) is separable and

the procedure is continuable. Three new functions An, Bn, Tn

for which three definition equations are available appear in every

step (for the definition of Tn one must note, however, each time

the assumption of reiterated separability). Thus, when one still

substitutes the constants Hoo by Uo(J_) and the coefficients Co,

do, e in (2) by the symbols Co, Do, Eo a gradual transformation0 '

of the Hamiltonian function occurs in the form

H'=__Uo(L,)+ Ro(_,,_,L,)

+ _{U_(L) + P,,(_,'7,L,))+ "

+ ,_"{u.u_) + R.(_, '7, 1_)} + .... W

(4)

or with

oo oo

U --'_" U, C =_2"C., O = x_._l"D, usf.,
--Z._ n

n=O n=O t,*=O

1-z-wo(/_) + u(]_) + c(]_)__+ D(]_)_,; + EU'_)+ .... w.•

For the segment dependent on _,_ with W - U = V = constant.

R _- C_ 2 + Df_ +;E_' + .... V. (5)

For small values of _,_ (not considering the higher powers as the

second) small vibrations around the center of libration result

when the expressed quadratic member is definite, i.e. when after

m

a suitable linear transformation of the_ ,_into_., H and of R into

AE 2 + BH 2 + .... V (6)

A and B have the same sign.

The calculation was only indicated for the case of a limit-

decomposed degree of freedom. Initially, these factors are given,
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however, by the formulations for s-fold decompostion. After the
t

completion of the proper calculation an expression like (4) results

when the limit-decomposed degrees of freedom can be separated from

the others. The equation (5) which followed from this consists of

a sum over all degrees of freedomS. By the proper linear trans-

formation of _e,_e it can be transformed into an expression like (6)

R -2S_Ao-_ + 8_Hi+ ...)= 7,

which permits separation without considering the members of higher

degrees. Thus, there are no new difficulties for motions in the

nearest vicinity to the (multiple) center of libration. A logical

transposition of the previous follows from the oscilation character

of the solution.

23.__ _ special solution for the perturbed limit-decomposed

system. In the conclusion of Section 22 Equation (3) was used to

show that in the general case no separation of the w_ values from

the_e_e values will be possible and that the method will not

therefore lead to the calculation of smaller oscilations around the

center of libration. However, in every case it is possible to show

that_e = 0,_= 0, i.e., inertia in the center of libration, is a

I

possible motion, since the equations (9') and (3") from Section 22

can be fulfilled by the proper selection of AI, BI, and since, in

any event, H takes on the form

H _ H* _, w_)+ R _, w_o,_, _) = w,

wherein R is a power series in_e,_ebeginning with members of the
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second degree. The canonical equations

_e c_H c_H

are thus certainly fulfilled by

Se= '_Q= 0, _ = ,}_= 0.

However, this stabilization in the center of libration represents

0 0
no standstill of the _e,_evalues used earlier. Moreover,

= Ao(_°) , 'IF = B0(©"),

O. 0and this motion of the_e-Oe continues to the definition of the

phase integral JW" Its contribution is, however, as can easily

calculate, from the order_ 2, and for this reason the equation

(3) from Section 22 for the case_ = _ = R I = 0 permits the definition

of T I without considering the center of libration of the decomposed

degrees of freedom.

The special case of the motion considered in this section is

the only important case from the standpoint of quantum theory.

It possesses the same degree of decomposition as the unperturbed

motion and, in the first approximation, also the same influence of

the non-decomposed degrees of freedom through the perturbation

forces, as if the decomposed variables were not being acted upon.

In the second approximation, however, the interaction of all degrees

of freedom becomes valid. With respect to the convergence of this

solution, moreover, remarks similar to those which were found at the

conclusion of Section 18 on the perturbation of non-decomposed
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systems are to be made since the series Ae, B£ are defined in the

very same manner as series.S is there.

In the manner described here the conclusions from Section 20

can also be completed if the random decomposition continues to exist

in the perturbed motion. One should read 47 of Born's book on

this subject I. It contains interesting quantum theoretical con-

¢lusions on the existence of phase relationships in Bohlian atoms.

24. The simultaneous existence of various types of decomposition.

The simultaneous existence of various types of decomposition causes

no new difficulties. They can be combined in many different manners.

On the one hand, the limit-decomposed degrees of freedom can even

be simultaneously decomposed characteristically or randomly. The

first case on _." causes a simplification in the considerations from

2
the previous figures, since H remains limited to the segment H .

O OO

The second brings about no changes whatsoever since the characteristic

peculiarity of the random decomposition _Ho/_ =0 in the previous

section remains unimportant.

Furthermore, several degrees of freedom can be limit-decomposed

simultaneously in a characteristic manner, while some can be limit-

decomposed in a random manner. One must then create a completely

developed initial movement by strict or approximated calculation of

the secular perturbations. Since we must assume, nevertheles_ that

i) M. Born, Atommechanik (cf. footnote in Sect. i).

2) Cf. the detailed calculation by L. Nordheim, ZS. f. Phys.

Vol. 17, p. 316, 1923, which is related to this case.
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the limit decomposed degrees of freedom can be separated from the

others, there is no difficulty in the combination of the methods.

25. The Delaunayian method I. Let us subsequently mention

a short procedure which was a predecessor of the Bohlinian method

and was also previously 2 transposed to quantum mechanics. It is

the expedient by Delaunay for the illumination for perturbing

commensurabilities, i.e., such members (9) in the series (8) of

Section 18 which are characterised by particularly small denomi-

nators. _

Let H__HoOr_) + _H,_, f_) (i)

and let -_°=_T,w_ be a angle variable which is becoming secular,

i.e., whose frequency_ in the unperturbed motion has a very

small value which, thus, almost decomposes randomly. It is then

possible to transpose the w$ values into f - i variables w_ and into

+

w_ by a linear integral transformation with determinates i. If

one selects only those members of the perturbation function containing

O .

wc --in our system of terminology the segment

motion is with the Hamiltonian function

H:-Uo + w:

_l--the intermediary

(2)
o

defined as that of a conditionally periodic system since only

O

the variable pair w_, Je' aside from the constants J_, is contained

in H_ (cf. Section 5). The corresponding Hamiltonian differential

Lecons Vol I, conclusion.i) Cf. Poincar_, ;

2) By P. S. Epstein, ZS. f. Phys. Vol. 8, p. 211 and 305, 1922;

Vol. 9, p. 22.
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equation can thus be integrated and leads to new angle and action

variables we, Je, through the consideration of the rotation or

libration of w_ in a familiar fashion. Thus, H contains the

form

in which the perturbation function no longer contains the trouble-

some members.

One can also use the procedure in order to take into account

particularly predominant Fourier members of the perturbation function

beforehand. In fact, one can relate member upon member of the same

through repeated application to repeatedly new conditionally periodic

intermediary motions. But, since by each new step infinitely many

new Fourier members of the perturbation function are simultaneously

introduced (in any even_, they are of higher order in )i, one can

only integrate a small number of especially predominant perturbation

members in this manner.

One sees that the Delaunayian method is actually only a special

case of the Bohlinian procedure described in Section 20. Its pecul_

arity is that the differential equation for the secular perturbations

can be strictly integrated through the extraction of a decomposed

variable.

IV. PERTURBATIONTHROUGHCHRONOLOGICALLYVARYING FIELDS.

26. Non-closed systems. Section III was only concerned with

i) Cf. J. Woltjer, ZS. f. Phys. Vol. 31, p. 107, 1925.
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closed systems whose Hamiltonian function was independent of time

with the inclusion of the perturbation members and to which, thus,

the form Chapter 3, Section 12, Equation _)of the Hamiltonian

partial differential equation could be applied. A series of problems--

one need only recall the theory of dispersion and the action of

thrusts on atoms as well as on the astronomical side the "limited"

three-body probleml--make it desirable to turn away from this limi-

tation.. We thus observe the _fe____. _f smell r__-_-_u___i__-___,_ Le:._-___---

dent on time of a system, which (aside from them) possesses a

Hamiltonian function independent of time, and which proceeds through

a conditionally periodic motion in the unperturbed case. Moreover,

we limit ourselves to non-decomposed initial systems and differen-

tiate both systems of multiple periodic or unperiodic perturbations.

Both cases can be visualized most easily when one assumes that

the system S considered with the Hamiltonian function Ho (jo) and

o in the unperturbed casewith the angle and action variables _Pk' Jk

coupled with a second system_which possesses the Hamiltonian

function _o(@ , _) without considering the interaction and also

possesses, when it itself has conditionally periodic character,.

the angle and action variableS-_k,,f k" The coupling is expressed

by interaction times of the common Hamiltonian function _ which can

i). Cf. Ch. 7, Sect. 26, 31f of this volume of the Handbook.
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be order according to powers of a small parameter _ and can be

o
written each time as periodic functions as wk :

• ,9.----Ho(Jo) + ,_oCq, P) + _Hx(7 °, w°, q, P) + "'"

+ )."H.(] °, wo, q, ;,) + ...

The Hamiltonian function

_= _0(f0)+ _H_U 0.,_0 q,P)+ ...'+_-H.U 0,_, ¢,_)+ ....

which governs the system S is then an explicit function of time

can be dependent on time) as in the manner of _ o of
(if_ k,_k

unperiodic or multiple periodic fQrm. Thereby,_k,_ k are abso-

lutely fixed functions of t if the system_is not noticeably influ-

enced by the coupling, e.g., when it is so much greater that S that

its counter action can be ignored.

27. Multiple periodic dependence on time of the perturbation

function. Let the perturbation function be given by the Hamiltonian

function
H-_ Ho (jo)+ _H_U °,w°,_) + ..'+ _"H, U °,w°,to)+ -..,

where in

rol,----rt,,t + b,.

(we do not explicitly introduce the constant_k values), and
o

H_ =_k_-.._ A(") e2=/(',_7+'"÷'m;+_'w*+"'tf_0.
_.a _.e r t.. . rftt ... t|

The canonical equations are

_H " _H
/,o = __j_, jo = _ -O-_'_"
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If one assumes that the perturbed total system is conditionally

periodic and that the new angle variables are thus bound to

equations of form (cf. Sect. 14 (3))

_,_= _ + _(_ ...._, _,...._)

then for the generatrix S of the canonical transformation (w°, jo)_)

(w, J)

and

. k

s =Xj,._# + xs,(_o, _) + ... + x-s,(_, 6) + .--,
g

aSx

appears. If one expands the new Hamiltonian function H+aS]at at

0

point Jk by Jk - Jk' then

_- + _ n_ _-_f + Hx C/, w°, m)H+_¥
1

' f ]
["r'J '' " l "

= Wo + i w_ (t) + ... + i" w. (t) + ...

This is a differential equation of the type in Chapter 3, Section

12, Equation (8); thereby, H._£_S/_# is not arbitrarily set = 0,

but is equal to a constant W plus a power series in _ of once
O

arbitrary functions of t (or of the_4 k values). W o results from

the requirement that So be independent of t and that the Wk, Jk

values should agree for _ = 0 with the w_, J_ values. The members

of the power series can be made constant through the proper selection

of _a$_lam_' . For this, one only needs to meet the requirement that,

for example

_,., _: +:2_, _ + ;i_ = o;
1 l
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then //,= W_. remains. (The bar indicates, as always, averaging

across the unit q of the wk values.) _ W l is left the chronological

mean value of the interaction energy of the first order across the

A description of a further calculation will not be given.

It is simply a logical transposition of the procedure from Section

18 of the stationary perturbation of a non-decomposed system.

Such calculations have been repeatedly described in connection

with the dispersion series I. System S is then conceived of as a

union of point-like electric loads which are dynamically bound in

some way or other, e.g. in the manner of the Bohrian atom, under

the influence of a quickly changing outer field which, however,

is homogeneous in the first approximation. The dipole moment of

the system under consideration_ ° is represented in the unperturbed

case as a multiple Fourier series of its old angle variables

= 7." "_a,,...,te , ,

the light wave as a multiple periodic function of time

____ .,_, _.-,_(t,m,+... +tirol) "• • ._.ett...tf e -

H I becomes the scalar product _o_. If the calculation scheme described

above is applied in such a form to perturbations which cannot be

considered as couplings with a system@ at a conditionally periodic

total mechanism, then there exists a compulsion expressed in the

i) Cf., e.g., the studies cited in Sect. 25, footnote 2, and in

Sect. 28, which contain further suggestions.
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• o

in the previous section if the angle and action variables Wk,

o of the unperturbed system are introduced so that
Jk

a'- HoU o) + ,tH_ U o. w°, t) + ... + ,t- H. (p, wo, t) + ... (i)

The Hamiltonian partial differential equation is of the

variety in Chap. 3, Sect. 12, Equation (8), and leads to an

action function

S (o,, w°. t) --So + ,IS_ + ... + ;."S.+ -..

with f integration c.onstants ¢_ k' _f which we can assume that

they are transformed into the quantity Jk for _ - 0

•OS,
l_ = o:_+ z_ + ...

Thus, S O-- _.'o_kw_

(3)

and for the variables _ k conjugated conically to the_k

the derivation

• ;._s,
/_, _+ o_, +""

value s,

Naturally, one cannot assume that the perturbed system is still

multiple periodic; the new variables were thus not indicated

with Wk, Jk"

If one introduces in the usual way and with the help of ¢3)

the constant _k into (i) and expands again by _ , then

H + &S&__7_ Ho(a) +..--/" ._/)' _w_. + -_ q- ¢"(°_w°t) '
.= I k

__ °

whereby the function _ are uncharacteristic Fourier series
n

of type (2)
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q'n = __ _X'" X'C _._ (t_ e°--'i (",wo,'-"""+rrwi ) •
• "_2_--tt...rf_ •

One again sees that use is made of the freedommentioned in

Chap. 3, Sect. 12 with respect to the dependency on time of

H + _ S/_ t through the selection of So, insofar as

with

_S

H -+- _/- = W o +/,Wx (t) -r -'"

TVo= Ho (o_)=.' 0

The other functions Wn(t ) must be caused to vanish, however, by

the suitable selection of the Sn values. This requires

",._ + -g/ =-,_. = _..._..,_c"' ,,...,, ,ct),=" ' (','+"" "+',w_t,

an equation which, as Jordan as shown, is fulfilled by the

postulate


